
Reinforcement Learning is So Confusing

Tri Nguyen
nguyetr9@oregonstate.edu

November 22, 2022

I’ve read this paper (Madjiheurem et al. 2021) a long time ago. The authors motivate their new
type of updates with this line of reasoning. The well-known TD-update only update value of the
immediately preceding states (given if the reward is not zero). The eligibility trace improves upon
this by making the update propagating back multiple states along the observed trajectory. Then
they proposed that we can even make a step further by not only updating all states along observed
trajectory but also all “plausible” counterfactual trajectories.

Although the reasoning is nicely motivated, I am not so convinced and want to know why or how
do we have all these kinds of updating. There should be a principle that they are all based on which
the author seemingly assume all audience are aware of. I think the origin problem starts with the
TD-update. Let’s trace back from it. Actually, this note starts from the very beginning of introducing
Reinforcement Learning (RL).

RL Goal. While the ultimate goal of using RL might be abstract and unqualitative, one must
explicitly provide some objective so that we can have a certain of how good/bad are we doing. One
of the such common goal is discounted cumulative reward. Be aware of that there are others goal, the
reason of choosing this is out of scope for now. It is defined as

Gπ = E

[∞∑
t=0

γtrt

]

where the expectation is taken over all random variables. So we want to maximize a sum of all rewards,
including the immediate reward with higher weight and future rewards with less significant weights,
and taking an average over multiple runs.

minimize
π

Gπ

Block 1. The goal does not concern with variance, which means it might output a good policy in
terms of average but might be very very unstable, e.g., getting a very high G on a particular run, and
moderate G for other 99 runs.

Immediately, one could ask: What are challenges of the optimization problem above? It looks
like an unconstrained problem, how hard it could be? At the moment, it is infeasible due to the
expectation. But hey, all supervised learning problems involve expectation and we’ve cracked them
like eating noodle. In statistical learning, under supervised classification setting, it is guaranteed that
if we do well on empirical loss, then the true loss (involving expectation) would be okay. That said,
although ultimate goal is true loss, we have a surrogate function containing no expectation to work
on. Hmm, then what would be a surrogate function for Gπ? Hold this thought, I’d like to come back
later.

1

Notation. We use Si as a random variable of state at time step t, si as a particular state in a set
of states S, |S| = N . It is really important to note that Si, i → ∞ while si, 1 ≤ i ≤ N . Similar,
Ai is used as a random variable of action at time step i, ai as a particular action in a set of actions
A, |A| = M ; r(Si, Ai) : S ×A → R as a reward received at time step i;

A way to decompose this G is

Gπ = E
[
r(S0, A0) + γr(S1, A1) + γ2r(S2, A2) + . . .+ γtr(St, At) + . . .

]
= E

r(S0, A0) + γ E
[
r(S1, A1) + . . .+ γt−1r(St, At) + . . .

]︸ ︷︷ ︸
this term is still a RV


= E[r(S0, A0) + γ V (1, S1)︸ ︷︷ ︸

a RV

],

where we define something called value function as follow.

Definition 1 (Value function). A value function of a policy is a real-value function, Vπ : S → R, and
is defined as

Vπ(i, s) := E
[
r(s,Ai) + γr(Si+1, Ai+1) + . . .+ γt−1r(St, At) + . . . |Si = s

]
(1)

One immediate question is whether this quantity is finite, i.e., Vπ(i, s) < ∞, ∀i, s? Roughly
speaking, it should be bounded, since r(s, a) < ∞, ∀s, a, hence it is upper bounded by harmonic
series, which is finite. And of course, the expectation being finite is followed. The conditioning Si = s
is necessary since all remaining RVs Ai, Si+1, Ai+1, . . . depend on that information (although do not
show the dependence explicitly)1.

Then, next question is if the index i is a necessary parameter of Vπ. It seems not: considering
infinite horizon, index i doesn’t matter, i.e., let i′ = i+ k, k > 0,

Vπ(i
′, s) = Vπ(i

′, s) (2)

We will show evidence of this later, but short answer is this holds (in the limit).

Remark 1. Value function at a state s at particular timestep i, i.e., Vπ(i, s) is a deterministic quantity.

Remark 2. Value function is time invariant, i.e., Vπ(i, s) = Vπ(i
′, s) for any i, i′ ≥ 0, considering that

there are infinitely many more timesteps after the timestep max(i, i′). Since it is time invariant, we
will use Vπ(s) as convention.

Remark 3. Value function of a state can be described by value function of other states.

Vπ(1, s) = E[r(s,A1) + γr(S2, A2) + . . .+ γt−1r(St, At) + . . . |S1 = s]

= E
A1

[
r(s,A1) + γE[r(S2, A2) + . . .+ γt−1r(St, At) + . . .] | S1 = s

]
(splitting RVs)

=
∑
i=1

Pr(A1 = ai|S1 = s)
(
r(s, ai) + γE[r(S2, A2) + . . .+ γt−1r(St, At) + . . . | S1 = s,A1 = ai]

)

1To demonstrate, you will see the following quantity makes no sense

E
[
r(s,A1) + γr(S2, A2) + . . .+ γt−1r(St, At) + . . .

]

2

The last term is

E[r(S2, A2) + γr(S3, A3) + . . . |S1 = s,A1 = ai]

=
∑
j=1

Pr(S2 = sj |S1 = s,A1 = ai)E [r(sj , A2) + γr(S3, A3) + . . . |S1 = s,A1 = ai, S2 = sj]

=
∑
j=1

Pr(S2 = sj |S1 = s,A1 = ai)E [r(sj , A2) + γr(S3, A3) + . . . |S2 = sj] (Markov property)

=
∑
j=1

Pr(S2 = sj |S1 = s,A1 = ai)Vπ(2, sj)

Combine those,

Vπ(1, s) =
∑
i=1

Pr(A1 = ai|S1 = s)

r(s, ai) + γ
∑
j=1

Pr(S2 = sj | S1 = s,A1 = ai)Vπ(2, sj)


With deterministic policy, the outer sum reduces to a single quantity, (well, when shall we do stochas-
tic?)

Vπ(1, s) = r(s, π(s)) + γ
∑
j=1

Pr(S2 = sj | S1 = s,A1 = π(s))Vπ(2, sj)

Block 2. For deterministic policy,

Vπ(1, s) = r(s, π(s)) + γ
∑
j=1

Pr(S2 = sj | S1 = s,A1 = π(s))Vπ(2, sj)

We can describe this in a more compactly using matrix/vector notation. Define the following
quantities

v1 = [Vπ(1, s1), Vπ(1, s2), . . . , Vπ(1, sN)]⊤∈ RN ,

v2 = [Vπ(2, s1), Vπ(2, s2), . . . , Vπ(2, sN)]⊤∈ RN ,

P12 =

 Pr(S2 = s1|S1 = s1, A1 = π(s1)) . . . Pr(S2 = sN | S1 = s1, A1 = π(s1))
...

...
...

Pr(S2 = s1|S1 = sN , A1 = π(sN)) . . . Pr(S2 = sN |S1 = sN , A1 = π(sN))

 ∈ RNM×N ,

r1 = [r(s1, π(s1)), r(s2, π(s2)), . . . , r(sN , π(sN))]⊤∈ RN

Notice that all subscripts above is used for timestep:

• v1,v2 are values at timestep 1 and 2;

• P12 are transition matrix from timestep 1 to timestep 2. P12 depends on environment’s property
and the policy. That makes sense since value function depends on the policy π. However, since
both transition defined by environment and the policy is time invariant, P12 is the same as
Pi(i+1) for any i. For that reason, let just use P .

• r1 is reward at timestep 1. Similarly, it is timestep invariant, let’s use r.

Then, Block 2 can be written as
v1 = r + γPv2,

and it holds for any timestep i,
vi = r + γPvi+1,

(Well, it takes forever to reach the contraction operator :(, but here we come).

3

Define a linear1 operator Tγ : RN → RN as

Tγ(v) ≜ r + γPv

Hence,
vi = Tγ(vi+1)

Why does it look unnatural (opposite direction is more natural)? Funny enough, this suggests that
we should start from the tail and then go backward to v1. And it is actually what people do.

Okay, in terms of theory, it is okay to go backward, just need to assume index can be negative and
goes to negative infinite. The important thing is Tγ is a γ-contractor. That means, going backward
far enough, i.e., T ≪ 0,

∥vT − vT+1∥∞ ≈ 0

This also confirms the speculation in (2).
Okay, we figured out some thing about the values function. But still this shreds no light into how

to optimize Gπ. In fact, it is now more confusing of how all these thing relate to Gπ.
Hmm, we need another start: A starting point from control theory. Every luckily, we are pointed

to a very good direction: (Bertsekas 2012) !!!

Some other very vague and unorganized thoughts.

• Consider deterministic policy, all the randomness in Gπ are from environment (transition matrix
mostly). So if we can estimate these randomness, we could solve this optimization as a linear
programming, couldn’t we?

• The RL problem has 2 interacting parts: estimating the dynamics of environment, find the best
policy. One can solve each sub-problem independently, or in a more involving way. I believe
that nature of dealing with 2 sub-problem simultaneously is what distinguishes RL from other
learning problems. Let’s call these problems Estimation and Control, resp.

• In the beginning of chapter 5.2, one of the discussing issues is that some (s, a) is never visited,
hence values at these are hard to estimate, hence one needs exploration so that every possible
place is visited. But I’m wondering, is it a generalization issue as in supervised learning?

• The problem formulation itself is not a typical optimization problem: the objective function
evolves over times. So it is a completely different problem class. Compared to classical op-
timization problem, we are solving many different problems, each at one timestep2, which is
parameterized by the state and the optimization variable is the action. Did people try to learn
the reward function using neural network as in supervised learning setting?

1is it linear?
2of course, they should relate to each other in someway

4

References

Bertsekas, Dimitri (2012). Dynamic programming and optimal control: Volume I. Vol. 1.
Madjiheurem, S et al. (2021). “Expected eligibility traces”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 35. Association for the Advancement of Artificial Intelligence (AAAI).

5

