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RL Framework

Input of the framework
Environment - Agent interation:

I At time step t, agent at state St performs an action At ∈ At

I Environment’s dynamics. The environment acts accordingly change
to state St+1, emits a reward Rt+1

I Episodic/Continuing task. Return: Gt =
∑∞

k=1 γ
kRt+k+1

Output of the framework
How. An agent that acts on the environment so that it maximizes the
expectation of return, i.e., E[Gt ].
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Roadmap

Given an MDP, find an optimal policy.

I Policy Iteration

I Value Iteration

I Connection between 2 and variants
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Environment’s dynamics

Markov decision process (MDP) descibes environment’s dynamics

I Finite sets of states, action, rewards S,A,R
I Random variables St ∈ S,Rt ∈ R are only dependent on preceding

state and action, i.e.,
p(s ′, r |s, a) := Pr(St = s ′,Rt = r |St−1 = s,At−1 = a)

I Markov property. State must include all information of the past
that makes a difference for the future
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Policy and Value Function

Definition
I Policy: π(a|s) = Pr(At = a|St = s)

I Value function: vπ(s) = Eπ[Gt |St = s] = Eπ [Rt+1 + γGt+1|St = s]

I Action-value function: qπ(s, a) = Eπ [Rt+1 + γGt+1|St = s,At = a]

I Optimal policy: π∗ such that vπ∗(s) ≥ vπ(s) and for all s ∈ S
I Optimal value function vπ∗s =

Remark
I (Bellman equation) vπ is the unique solution of

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′))

I (Bellman optimality equation) v∗ is the unique solution of

⇒ v∗(s) = max
a∈A(s)

∑
s′,r

p(s ′, r |St = s,At = a) (r + γv∗(s
′)) (1)
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Policy Evaluation

Let v =
[
vπ(s1) . . . vπ(sn)

]T
,

R =

E[Rt+1|St = s1]
. . .

E[Rt+1|St = sn]

 , P =

p(s1|s1) p(s2|s1) . . . p(sn|s1)
. . .

p(s1|sn) p(s2|sn) . . . p(sn|sn)



vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′))

⇒ vs = Eπ[Rt+1|St = s] +
n∑

i=1

γp(si |St = s)vsi

Then Bellman equation in matrix form is

v = R + γPv

Any method to solve a linear system can be used to find v?
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Iterative Policy Evaluation

I Let T (v) = R + γPv . By fixed-point property, a sequence vk where
vk = T (vk−1) will converge to v∗.

I Expected updates: In order to produce new v , the algorithm
updates value of every state

I In-place update: Directly used new value of vπ(s) during updating
vπ(s ′). . It is valid update since

|Tπ(v)[s]− Tπ(v ′)[s]| ≤ γ ‖v − v ′‖∞
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Policy Improvement

Theorem
For 2 deterministic policy π, π′, if for all s ∈ S,

qπ(s, π′(s)) ≥ vπ(s)⇒ π′ ≥ π

Proof.

vπ(s) ≤ qπ(s, π′(s))

= Eπ [Rt+1 + γvπ(St+1)|St = s,At = π′(s)]

= Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

= Eπ′ [Rt+1 + γE [Rt+2 + γvπ(St+2)|St+1,At+1 = π′(St+1)] |St = s]

= Eπ′
[
Rt+1 + γRt+2 + γ2vπ(St+2)|St = s

]
≤ . . .
≤ Eπ′

[
Rt+1 + γRt+2 + γ3Rt+3 + . . . |St = s

]
= vπ′(s)
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I Key to improvement is to find π′

qπ(s, π′(s)) ≥ vπ(s) (2)

I Seek for an action to improve in short term (1 step)

π′(s) := arg max
a

qπ(s, a)

then by Policy improvement theorem, π′ ≥ π
I If no improvement is available, i.e., vπ = vπ′ then vπ = v∗ because

vπ′(s) = max
a

E[Rt+1 + γvπ(s)|St = s,At = a]

= max
a

E[Rt+1 + γvπ′(s)|St = s,At = a]

I Note that vπ = vπ′ but not π = π′ gives a hint about reaching
optimal value.
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Policy Iteration

π0
Eval−−→ vπ0

Improve−−−−→ π1
Eval−−→ vπ1

Improve−−−−→ . . .
Improve−−−−→ π∗

Eval−−→ vπ∗

Figure: There’s a subtle bug

I Truncated variant: run a small K number of iterations for step 2.
I Converge very fast in few iterations, but computationally expensive

because of policy evaluation
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Value Iteration
Combine policy improvement and truncated policy evalution in one step:

vk+1(s) := max
a

E[Rt+1 + γvk(St+1)|St = s,At = a] (3)

I Truncated policy evaluation: Vanilla policy evalution with only 1
iteration

I (3) is Bellman optimality equation if substituting vk , vk+1 by v∗

I The inner loop does not neccessarily need to run over all s ∈ S
(Asynchronous DP)
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Generalized Policy Iteration

There’s is a notion of alternating between policy evaluation and policy
improvement

I In PI, a policy improvement is performed after a completing policy
evaluation and vice versa.

I In VI, only single iteration of policy evaluation is performed in
between each policy improvement.

I We can even interleaved at finer grain: mixed asynchronous DP in
VI with PI

I Policy evaluation and policy improvement are both competing and
coorperating.
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Figure: v = R + γPv ⇒ v = (I − γP)−1R

Define

Tπ(v)[s] :=
∑
a

π(a|s)
∑
s′,r

p(s′, r |St = s,At = a)
(
r + γvπ(s′)

)
T (v)[s] := max

a∈A(s)

∑
s′,r

p(s′, r |St = s,At = a)
(
r + γv∗(s′)

)

I Value iteration{
πk+1 ← greedy(vπk )

vk+1 ← Tπk+1 (vk)
⇔

{
πk+1 ← greedy(vπk )

vk+1 ← R + γPvk

I Policy iteration{
πk+1 ← greedy(vπk )

vk+1 ← T∞πk+1
(vk)

⇔

{
πk+1 ← greedy(vπk )

vk+1 ← (I − γP)−1R
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I Bertsekas and Ioffe (1996) introduced an operator which is proved to be a
λγ-contraction respect to l∞ norm

Mk(v) := (1− λ)Tπk+1 (vk) + λTπk+1 (v)

= (1− λ)(R + γPvk) + λ(R + γPv)

= R + (1− λ)γPvk + λγPv

I Since Mk(v) is a contraction, it has a unique fixed point, vM = M∞k (v)
exists

vM = R + (1− λ)γPvk + λγPvM

⇔ vM = (I − λγP)−1(R + (1− λ)γPvk)

I Use Mk(v), λ policy iteration’s update is given by.{
πk+1 ← greedy(vπk )

vk+1 ← (I − λγP)−1(R + (1− λ)γPvk)

I Let Tλ(v) := vM = (I − λγP)−1(R + (1− λ)γPvk) be operator.{
πk+1 ← greedy(vπk )

vk+1 ← Tλ(vk)
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I In the updating step, λ policy iteration trying to find fixed point of
operator Mk(v).

I Define a sequence of v1, v2, . . . such as vj+1 = Mk(vj) We have:

vj+1 = Mk(vj) = (1− λ)Tπk+1 (vk) + λTπk+1 (vj)

= (1− λ)Tπk+1 (vk) + λTπk+1 (Mk(vj−1))

= (1− λ)Tπk+1 (vk) + λTπk+1

(
(1− λ)Tπk+1 (vk) + λTπk+1 (vj−1)

)
= (1− λ)(Tπk+1 (vk) + λT 2

πk+1
(vk)) + λ2T 2

πk+1
Tπk+1 (vj−1))

= . . .

= (1− λ)
∞∑
j=0

λjT j+1
πk+1

(vk)

so that the update rule becomes

{
πk+1 ← greedy(vπk )

vk+1 ← (1− λ)
∑∞

j=0 λ
jT j+1

πk+1
vk
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Summary

I Policy evaluation is based on Bellman equation

I Value iteration is based on Bellman optimality equation

I GPI views a different levels of interleaving between policy evaluation and
policy improvement

16 / 16


