Introduction to Reinforcement learning

Tri Nguyen

Oregon State University

August 19, 2021

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や
1/28

Reinforcement Learning (RL)

	With teacher	Without teacher
Passive	Supervised	Self-(un)supervised
	Learning	Learning
Active	Reinforcement	Intrinsic Motivation
	Learning	(Exploration)

Table: Tutorial - ICML2021

Learning what-to-do from interaction and optimizing reward.

Problems to cast to RL

(c) Real-time strategy games

(d) Self-driving car

and many more ...

Given *n* bandit machines. You can pull the level of one of them and obsever the result: either nothing or win a fixed amount of cash. Each bandit machine has it owns wining distribution. If you can play M times, what's your strategy to maximize total amount of cash?

- A_t as action picked at step t
- \triangleright R_t as reward received at step t
- Action value: $q_*(a) = \mathbb{E}[R_t | A_t = a]$
- Estimate action value at step t: $Q_t(a)$

Balancing between exploitation and exploration!

Baseline: ϵ -greedy Algorithm

Estimate
$$q_*(a)$$
 by $Q_n(a) = \frac{R_1 + R_2 + \ldots + R_{n-1}}{n-1}$

A simple bandit algorithm

 $\begin{array}{l} \mbox{Initialize, for $a=1$ to k:} \\ Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \\ \mbox{Icop forever:} \\ A \leftarrow \left\{ \begin{array}{l} \mbox{argmax}_a Q(a) & \mbox{with probability $1-\varepsilon$} & \mbox{(breaking ties randomly)} \\ \mbox{a random action} & \mbox{with probability ε} \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)] \end{array} \right.$

Figure: From [Sutton&Barto]

Variant 1: Optimistic Initial Values

Init Q(a) as a nonzero constant C > 0.

A simple bandit algorithm							
Initialize, for $a = 1$ to k : $Q(a) \leftarrow C$ $N(a) \leftarrow 0$							
$ \begin{array}{l} \text{Loop forever:} \\ A \leftarrow \left\{ \begin{array}{l} \operatorname*{argmax}_{a} Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{array} \right. \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right] \end{array} $	(breaking ties randomly)						

Figure: From [Sutton&Barto]

Variant 2: Upper-Confidence-Bound Action Selection (UCB)

A simple bandit algorithm

Initialize, for a = 1 to k: $Q(a) \leftarrow 0$ $N(a) \leftarrow 0$

Loop forever:

$$\begin{array}{l} A_t \doteq \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right] \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right] \end{array}$$

Figure: From [Sutton&Barto]

Evaluation

Figure: From [Sutton&Barto]

- ▶ 10-armed bandits
- ▶ Each $q_*(a) \sim \mathcal{N}(0, 1)$
- And then the actual rewards are drawn from N with a mean q_{*}(a) and unit variance

The results are averages over 2000 trials.

Note that in both figures, there is a jump around in early part of the curve.

- In the first 10 iterations, all actions are seleted once regardless of actual rewards.
- After that, Q₁₁(a) might estimate q_{*}(a) relatively correct, i.e., arg max_a Q₁₁(a) = arg max_a q_{*}(a)
- ▶ Then it is likely (40%) that an optimal action is picked.

Reinforcement Learning Framework

General question: how to train an agent to archive a goal by interacting with the environment, e.g., train a robot to escape a maze. RL solves it by using the following framework:

Figure: [Sutton&Barto]

Input of the framework

Environment - Agent interation:

- At time step t, agent at state S_t performs an action $A_t \in \mathcal{A}(S_t)$
- ► The *environment* acts accordingly change to state S_{t+1}, emits a reward R_{t+1}

• Return:
$$G_t = \sum_{k=1}^{\infty} \gamma^k R_{t+k+1}$$

Output of the framework

An agent that acts on the environment so that it maximizes the expectation of *return*, i.e., $\mathbb{E}[G_t]$.

Examples of using framework

Figure: Given a position, find a way to reach the red \boldsymbol{X}

Goal: Given a position, find a way to reach the red X

- At time t, state S_t is current position
- Agent at state S_t can move to any valid directions (direction not break wall)
- Environment dynamic:
 - Agent being at the desired position by 1 unit
 - Emits a reward of 10 when it reach X, otherwise 0.
- Return G_t = ∑_{k=1}[∞] R_{t+k+1}. Not that we choose γ = 1, and T is number of time steps until the agent reaches red X

Figure: Given a position, find a way to reach the red X as fast as possible

Goal: Given a position, find a way to reach the red X as fast as possible!

- At time t, state S_t is current position
- Agent at state S_t can move to any valid directions (direction not break wall)
- Environment dynamic:
 - Agent being at the desired position by 1 unit
 - Emits a reward of 10 when it reach X, otherwise -1.
- Return G_t = ∑_{k=1}[∞] R_{t+k+1}. Not that we choose γ = 1, and T is number of time steps until the agent reaches red X

Cart-Pole Problem

Figure: Keep the pole from falling by moving the card horizontally (From Lecture 1)

Goal: Keep the pole from falling by moving the card horizontally

- At time t, state S_t is a collection of angle, angular speed, position, horizontal vertical
- Agent at state S_t can apply a force horizontally to the cart.
- Environment dynamic:
 - ► The pole acts accordingly to physical laws.
 - Emits a reward of 1 when the pole is upright, otherwise -10.
 - Once the pole hits ground, there's no way to make it be upright.
- Return G_t = ∑_{k=1}[∞] R_{t+k+1}. Not that we choose γ = 1, and T is number of time steps until the pole is dropped.

1Lecture CS231 Stanford - Fei-Fei Li & Justin Johnson & Serena Yeung 🛛 🗄 👘 🚊 🔊 🧠 🤊

Playing chess

Figure: Playing chess

Goal: Win as much as possible!

- At time t, state S_t is a position of all chess piecies.
- Agent at state S_t can apply a valid move of one of its chess pieces.
- Environment dynamic:
 - The opponent will move 1 of its piece.
 - Emits a reward of 0 when the game is not terminated, otherwise 1 for winning, -1 for losing, 0 for drawing.
- Return $G_t = \sum_{k=1}^{\infty} R_{t+k+1}$.

RL Framework

Figure: (ref. Book)

Input of the framework

Environment - Agent interation:

- At time step *t*, *agent* at state S_t performs an action $A_t \in A_t$
- ► (2) Environment's dynamics. The environment acts accordingly change to state S_{t+1}, emits a reward R_{t+1}
- (1) Episodic/Continuing task. Return: $G_t = \sum_{k=1}^{\infty} \gamma^k R_{t+k+1}$

Output of the framework

(3) How. An agent that acts on the environment so that it maximizes the expectation of *return*, i.e., $\mathbb{E}[G_t]$.

(1) Episodic/Continuing tasks

The interation agent-environment produces $S_1, A_1, R_2, S_2, A_2, R_3, \dots$ Episodic tasks

- The sequence can break natually into subsequences
- Example: playing chess
- Return

$$G_t = \sum_{k=1}^{T} \gamma^k R_{t+k+1}, 0 \le \gamma \le 1$$

There exits a termination state In both cases: G_t = R_{t+1} + γG_{t+1}.

- Otherwise
- Example: Robot with long life span
- Return

$$G_t = \sum_{k=1}^{\infty} \gamma^k R_{t+k+1}, 0 \le \gamma < 1$$

 There is no notion of termination state

(2) Environment's dynamics

Markov decision process (MDP) descibes environment's dynamics

- Finite sets of states, action, rewards S, A, R
- ▶ Random variables $S_t \in S$, $R_t \in \mathcal{R}$ are only dependent on preceding state and action, i.e., $p(s' \mid s, s) := Pr(S_t = s' \mid R_t = s)$
 - $p(s', r|s, a) := \Pr(S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a)$
- Markov property. State must include all information of the past that makes a difference for the future

Example: A recycling robot Describe more Some justication Diff on agent and Env

					1, r_{wait} 1- β , -3 β , r_{search}
8	a	s'	p(s' s, a)	r(s, a, s')	1-p,-5
high	search	high	α	rsearch	wait search 🔶
high	search	low	$1 - \alpha$	rsearch	
low	search	high	$1 - \beta$	-3	
low	search	low	β	rsearch	1,0 recharge
high	wait	high	1	<i>r</i> wait	(high) (low)
high	wait	low	0	-	
low	wait	high	0	-	$ / \downarrow $
low	wait	low	1	<i>r</i> wait	
low	recharge	high	1	0	e search ewait
low	recharge	low	0	-	
					$\alpha, r_{\text{search}}$ $1-\alpha, r_{\text{search}}$ $1, r_{\text{wait}}$

Figure: Example of an MPD

(3) How. Part1: Evaluation — Policy and Value function

Policy π is a mapping from S → D(a) where D(a) is some probability distribution over action space. If the agent follows policy π,

$$\pi(a|s) = \Pr(A_t = a|S_t = s)$$

Value function of a state under π , denoted $v_{\pi}(s)$, is the expected return when starting in s and following π thereafter, i.e.,

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

- We call v_{π} the state-value function for policy π
- **b** Based on that, define the *action-value function* for policy π as

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_t | S_t = s, A_t = a]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$

Bellman Equation of Value Function

$$\begin{aligned} v_{\pi}(s) \\ &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s] \\ &= \sum_{a} \pi(a|s)\mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_{t} = s] \\ &= \sum_{a} \pi(a|s)\sum_{s',r} p(s',r|S_{t} = s, A_{t} = a)[r + \gamma G_{t+1}] \\ &= \sum_{a} \pi(a|s)\sum_{s',r} p(s',r|S_{t} = s, A_{t} = a)(r + \gamma \mathbb{E}_{\pi}[R_{t+2} + \gamma G_{t+2}|S_{t+1} = s']) \\ &= \sum_{a} \pi(a|s)\sum_{s',r} p(s',r|S_{t} = s, A_{t} = a)(r + \gamma v_{\pi}(s')) \end{aligned}$$

ク Q (や 20 / 28

(3) How. Part 2: Optimal Policies

Definition

A poicy π is defined to be better than or equal to a policy π' if its expected return is greater than or equal to that of π' for **all states**. In other words,

$$\pi \geq \pi' \Leftrightarrow \mathsf{v}_{\pi}(s) \geq \mathsf{v}_{\pi'}(s)$$
 for all $s \in \mathcal{S}$

Definition

 π_* is the *optimal policy* if and only if $\pi_* \ge \pi$ for any π . Value of optimal policy is called *optimal state-value function*, denoted v_* and defined as

$$v_*(s)\coloneqq \max_\pi v_\pi(s), \quad ext{for all } s\in \mathcal{S}$$

Similarly, $q_*(s, a)$ is optimal action-value function and defined as

$$q_*(s,a) \coloneqq \max_{\pi} q_{\pi}(s,a), \quad ext{for all } s \in \mathcal{S}, a \in \mathcal{A}_t$$

21 / 28

イロト イロト イヨト イヨト 二日

Bellman Optimality Equation

Assume π_* exists,

$$v_{*}(s) = v_{\pi_{*}}(s) \quad (by \text{ definition})$$

= $\max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(a, s)$
= $\max_{a \in \mathcal{A}(s)} \mathbb{E}_{\pi_{*}} [R_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$
= $\max_{a \in \mathcal{A}(s)} \mathbb{E} [R_{t+1} + \gamma v_{*}(s') | S_{t} = s, A_{t} = a]$
 $\Rightarrow v_{*}(s) = \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r | S_{t} = s, A_{t} = a) (r + \gamma v_{*}(s'))$ (1)

Compare to Bellman equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|S_t = s, A_t = a) \left(r + \gamma v_{\pi}(s')\right)$$

the equation (1) doesn't depend on any particular policy

Properties regarding Bellman Equations

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|S_t = s, A_t = a) (r + \gamma v_{\pi}(s'))$$
(2)

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r | S_t = s, A_t = a) (r + \gamma v_*(s'))$$
(3)

Remark

- Bellman equation (2) has an unique solution, which is $v_{\pi}(s)$.
- Bellman optimality equation (3) has an unique solution, which is v_{*}(s)

Implication:

- Given an optimal value function, greedy policy is the optimal policy, (actions satisfies (3))
- ▶ Given an optimal action-value function q_{*}(s, a), the optimal policy is arg max_a q_{*}(s, a)

Sketch proof of Remark 0.1. Define

- A fixed point of a function f is x such that x = f(x)
- ▶ An function $f : \mathbb{R}^N \to \mathbb{R}^N$ is called a contraction if there exists $0 < \alpha < 1$ such that

$$\|f(\boldsymbol{s}) - f(\boldsymbol{s}')\|_{p} \leq \alpha \|\boldsymbol{s} - \boldsymbol{s}'\|_{p}, \quad \text{ for some } p \geq 1$$

1. If f is an α -contraction, then f has an unique fixed point 2. Let $\mathbf{v} \in \mathbb{R}^N$ be a vector of all value states,

$$T_{\pi}(\mathbf{v})[s] \coloneqq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|S_t = s, A_t = a) (r + \gamma v_{\pi}(s'))$$
$$T_{*}(\mathbf{v})[s] \coloneqq \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|S_t = s, A_t = a) (r + \gamma v_{*}(s'))$$

 T_{π}, T_{*} are both contraction.

Step 1

If f is a α -contraction, then f has an unique fixed point.

Proof.

Uniqueness Let s, s' are 2 fixed points of f.

$$\alpha \left\| \boldsymbol{s} - \boldsymbol{s}' \right\|_{p} \ge \left\| f(\boldsymbol{s}) - f(\boldsymbol{s}') \right\|_{p} = \left\| \boldsymbol{s} - \boldsymbol{s}' \right\|_{p}$$

Since $0 < \alpha < 1$, this contraction leads to s = s'. **Existence**

• Define a sequence of s_k such that $s_{k+1} = f(s_k)$

$$\begin{split} \|\boldsymbol{s}_{k+1} - \boldsymbol{s}_{k}\|_{p} &= \|f(\boldsymbol{s}_{k}) - f(\boldsymbol{s}_{k-1})\|_{p} \\ &\leq \alpha \|\boldsymbol{s}_{k} - \boldsymbol{s}_{k-1}\|_{p} = \alpha \|f(\boldsymbol{s}_{k-1}) - f(\boldsymbol{s}_{k-2})\|_{p} \\ &\leq \alpha^{2} \|\boldsymbol{s}_{k-1} - \boldsymbol{s}_{k-2}\|_{p} \leq \ldots \leq \alpha^{k} \|\boldsymbol{s}_{1} - \boldsymbol{s}_{0}\|_{p} \end{split}$$

Intuitively, we can say that s_∗ = lim_{k→∞} s_k for some s_∗, hence s_∗ = f(s_∗). Technically, it involes of showing domain of f is complete and sequence s_k is a Cauchy sequence.

↓ □ > ↓

Step 2

 T_{π} is a γ -contraction with $p = \infty$. Proof.

$$|T_{\pi}(\mathbf{v})[s] - T_{\pi}(\mathbf{v}')[s]| = |\sum_{a \in \mathcal{A}(s)} \sum_{s', r} \gamma \pi(a|s) p(s', r|s, a) (\mathbf{v}[s'] - \mathbf{v}'[s'])|$$

$$\leq |\sum_{a \in \mathcal{A}(s)} \sum_{s', r} \gamma \pi(a|s) p(s', r|s, a) \max_{s} (\mathbf{v}[s] - \mathbf{v}'[s])|$$

$$\leq |\gamma \max_{s} (\mathbf{v}[s] - \mathbf{v}'[s])|$$

$$= \gamma ||\mathbf{v} - \mathbf{v}'||_{\infty}$$

Similar proof for T_* . Since T_{π} , T_* are contraction and there exists unique points v_{π} , v_* , they are unique. (3) How. Part 3: Find optial policy

Next session.

Reference

- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
- ► The notes²by Dr Daniel Murfet