
Introduction to Reinforcement learning

Tri Nguyen

Oregon State University

August 19, 2021

1 / 28

Reinforcement Learning (RL)

With teacher Without teacher
Passive Supervised Self-(un)supervised

Learning Learning
Active Reinforcement Intrinsic Motivation

Learning (Exploration)

Table: Tutorial - ICML2021

Learning what-to-do from interaction and optimizing reward.

2 / 28

Problems to cast to RL

(a) Board games (b) Robot manipulation

(c) Real-time strategy games (d) Self-driving car

and many more . . .

3 / 28

https://www.youtube.com/watch?v=KH9m0L7F-sE
https://www.youtube.com/watch?v=VMp6pq6_QjI&t=0s

Given n bandit machines. You can pull the level of one of them and
obsever the result: either nothing or win a fixed amount of cash. Each
bandit machine has it owns wining distribution. If you can play M times,
what’s your strategy to maximize total amount of cash?

I At as action picked at step t

I Rt as reward received at step t

I Action value: q∗(a) = E[Rt |At = a]

I Estimate action value at step t: Qt(a)

Balancing between exploitation and exploration!

4 / 28

Baseline: ε-greedy Algorithm

Estimate q∗(a) by Qn(a) =
R1 + R2 + . . .Rn−1

n − 1

Figure: From [Sutton&Barto]

5 / 28

Variant 1: Optimistic Initial Values

Init Q(a) as a nonzero constant C > 0.

Figure: From [Sutton&Barto]

6 / 28

Variant 2: Upper-Confidence-Bound Action Selection
(UCB)

Figure: From [Sutton&Barto]

7 / 28

Evaluation

Figure: From [Sutton&Barto]

I 10-armed bandits

I Each q∗(a) ∼ N (0, 1)

I And then the actual rewards are drawn from N with a mean q∗(a)
and unit variance

8 / 28

The results are averages over 2000 trials.

(a) ε-greedy v.s Optimistic Initial Value (b) ε-greedy v.s UCB

Note that in both figures, there is a jump around in early part of the
curve.

I In the first 10 iterations, all actions are seleted once regardless of
actual rewards.

I After that, Q11(a) might estimate q∗(a) relatively correct, i.e.,
arg maxa Q11(a) = arg maxa q∗(a)

I Then it is likely (40%) that an optimal action is picked.

9 / 28

Reinforcement Learning Framework
General question: how to train an agent to archive a goal by interacting
with the environment, e.g., train a robot to escape a maze.
RL solves it by using the following framework:

Figure: [Sutton&Barto]

Input of the framework
Environment - Agent interation:

I At time step t, agent at state St performs an action At ∈ A(St)

I The environment acts accordingly change to state St+1, emits a
reward Rt+1

I Return: Gt =
∑∞

k=1 γ
kRt+k+1

Output of the framework
An agent that acts on the environment so that it maximizes the
expectation of return, i.e., E[Gt].

10 / 28

Examples of using framework

Figure: Given a position, find a way to
reach the red X

Goal: Given a position, find a way to reach the red
X

I At time t, state St is current position

I Agent at state St can move to any valid
directions (direction not break wall)

I Environment dynamic:
I Agent being at the desired position by 1 unit
I Emits a reward of 10 when it reach X,

otherwise 0.

I Return Gt =
∑∞

k=1 Rt+k+1.
Not that we choose γ = 1, and T is number
of time steps until the agent reaches red X

11 / 28

Figure: Given a position, find a way to
reach the red X as fast as possible

Goal: Given a position, find a way to reach the red
X as fast as possible!

I At time t, state St is current position

I Agent at state St can move to any valid
directions (direction not break wall)

I Environment dynamic:
I Agent being at the desired position by 1 unit
I Emits a reward of 10 when it reach X,

otherwise −1.

I Return Gt =
∑∞

k=1 Rt+k+1.
Not that we choose γ = 1, and T is number
of time steps until the agent reaches red X

12 / 28

Cart-Pole Problem

Figure: Keep the pole from falling by
moving the card horizontally (From

Lecture 1)

Goal: Keep the pole from falling by moving the
card horizontally

I At time t, state St is a collection of angle,
angular speed, position, horizontal vertical

I Agent at state St can apply a force
horizontally to the cart.

I Environment dynamic:
I The pole acts accordingly to physical laws.
I Emits a reward of 1 when the pole is upright,

otherwise −10.
I Once the pole hits ground, there’s no way to

make it be upright.

I Return Gt =
∑∞

k=1 Rt+k+1.
Not that we choose γ = 1, and T is number
of time steps until the pole is dropped.

1Lecture CS231 Stanford - Fei-Fei Li & Justin Johnson & Serena Yeung
13 / 28

Playing chess

Figure: Playing chess

Goal: Win as much as possible!

I At time t, state St is a position of all chess
piecies.

I Agent at state St can apply a valid move of
one of its chess pieces.

I Environment dynamic:
I The opponent will move 1 of its piece.
I Emits a reward of 0 when the game is not

terminated, otherwise 1 for winning, −1 for
losing, 0 for drawing.

I Return Gt =
∑∞

k=1 Rt+k+1.

14 / 28

RL Framework

Figure: (ref. Book)

Input of the framework
Environment - Agent interation:

I At time step t, agent at state St performs an action At ∈ At

I (2) Environment’s dynamics. The environment acts accordingly
change to state St+1, emits a reward Rt+1

I (1) Episodic/Continuing task. Return: Gt =
∑∞

k=1 γ
kRt+k+1

Output of the framework
(3) How. An agent that acts on the environment so that it maximizes
the expectation of return, i.e., E[Gt].

15 / 28

(1) Episodic/Continuing tasks

The interation agent-environment produces S1,A1,R2,S2,A2,R3, . . .

Episodic tasks

I The sequence can break
natually into subsequences

I Example: playing chess

I Return

Gt =
T∑

k=1

γkRt+k+1, 0 ≤ γ≤1

I There exits a termination state

Continuing tasks

I Otherwise

I Example: Robot with long life
span

I Return

Gt =
∞∑
k=1

γkRt+k+1, 0 ≤ γ<1

I There is no notion of
termination state

In both cases: Gt = Rt+1 + γGt+1.

16 / 28

(2) Environment’s dynamics

Markov decision process (MDP) descibes environment’s dynamics

I Finite sets of states, action, rewards S,A,R
I Random variables St ∈ S,Rt ∈ R are only dependent on preceding

state and action, i.e.,
p(s ′, r |s, a) := Pr(St = s ′,Rt = r |St−1 = s,At−1 = a)

I Markov property. State must include all information of the past
that makes a difference for the future

17 / 28

Example: A recycling robot Describe more Some justication
Diff on agent and Env

Figure: Example of an MPD

18 / 28

(3) How. Part1: Evaluation — Policy and Value function

I Policy π is a mapping from S −→ D(a) where D(a) is some
probability distribution over action space. If the agent follows policy
π,

π(a|s) = Pr(At = a|St = s)

I Value function of a state under π, denoted vπ(s), is the expected
return when starting in s and following π thereafter, i.e.,

vπ(s) = Eπ[Gt |St = s] = Eπ [Rt+1 + γGt+1|St = s]

I We call vπ the state-value function for policy π

I Based on that, define the action-value function for policy π as

qπ(s, a) = Eπ[Rt+1 + γGt |St = s,At = a]

= Eπ [Rt+1 + γGt+1|St = s,At = a]

19 / 28

Bellman Equation of Value Function

vπ(s)

= Eπ[Gt |St = s] = Eπ [Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)E [Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) [r + γGt+1]

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γEπ [Rt+2 + γGt+2|St+1 = s ′])

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′))

Figure: Backup operation for state-value function

20 / 28

(3) How. Part 2: Optimal Policies

Definition
A poicy π is defined to be better than or equal to a policy π′ if its
expected return is greater than or equal to that of π′ for all states. In
other words,

π ≥ π′ ⇔ vπ(s) ≥ vπ′(s) for all s ∈ S

Definition
π∗ is the optimal policy if and only if π∗ ≥ π for any π. Value of optimal
policy is called optimal state-value function, denoted v∗ and defined as

v∗(s) := max
π

vπ(s), for all s ∈ S

Similarly, q∗(s, a) is optimal action-value function and defined as

q∗(s, a) := max
π

qπ(s, a), for all s ∈ S, a ∈ At

21 / 28

Bellman Optimality Equation

Assume π∗ exists,

v∗(s) = vπ∗(s) (by definition)

= max
a∈A(s)

qπ∗(a, s)

= max
a∈A(s)

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a∈A(s)

E [Rt+1 + γv∗(s
′)|St = s,At = a]

⇒ v∗(s) = max
a∈A(s)

∑
s′,r

p(s ′, r |St = s,At = a) (r + γv∗(s
′)) (1)

Compare to Bellman equation

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′))

the equation (1) doesn’t depend on any particular policy

22 / 28

Properties regarding Bellman Equations

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′)) (2)

v∗(s) = max
a∈A(s)

∑
s′,r

p(s ′, r |St = s,At = a) (r + γv∗(s
′)) (3)

Remark
I Bellman equation (2) has an unique solution, which is vπ(s).

I Bellman optimality equation (3) has an unique solution, which is
v∗(s)

Implication:

I Given an optimal value function, greedy policy is the optimal policy,
(actions satisfies (3))

I Given an optimal action-value function q∗(s, a), the optimal policy is
arg maxa q∗(s, a)

23 / 28

Sketch proof of Remark 0.1. Define

I A fixed point of a function f is x such that x = f (x)

I An function f : RN → RN is called a contraction if there exists
0 < α < 1 such that

‖f (s)− f (s ′)‖p ≤ α ‖s − s ′‖p , for some p ≥ 1

1. If f is an α-contraction, then f has an unique fixed point

2. Let v ∈ RN be a vector of all value states,

Tπ(v)[s] :=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |St = s,At = a) (r + γvπ(s ′))

T∗(v)[s] := max
a∈A(s)

∑
s′,r

p(s ′, r |St = s,At = a) (r + γv∗(s
′))

Tπ,T∗ are both contraction.

24 / 28

Step 1
If f is a α-contraction, then f has an unique fixed point.

Proof.
Uniqueness Let s, s ′ are 2 fixed points of f .

α ‖s − s ′‖p ≥ ‖f (s)− f (s ′)‖p = ‖s − s ′‖p

Since 0 < α < 1, this contraction leads to s = s ′.
Existence

I Define a sequence of sk such that sk+1 = f (sk)

‖sk+1 − sk‖p = ‖f (sk)− f (sk−1)‖p
≤ α ‖sk − sk−1‖p = α ‖f (sk−1)− f (sk−2)‖p
≤ α2 ‖sk−1 − sk−2‖p ≤ . . . ≤ α

k ‖s1 − s0‖p

I Intuitively, we can say that s∗ = limk→∞ sk for some s∗, hence
s∗ = f (s∗). Technically, it involes of showing domain of f is
complete and sequence sk is a Cauchy sequence.

25 / 28

Step 2

Tπ is a γ-contraction with p =∞.

Proof.

|Tπ(v)[s]− Tπ(v ′)[s]| = |
∑

a∈A(s)

∑
s′,r

γπ(a|s)p(s ′, r |s, a)(v [s ′]− v ′[s ′])|

≤ |
∑

a∈A(s)

∑
s′,r

γπ(a|s)p(s ′, r |s, a) max
s

(v [s]− v ′[s])|

≤ |γmax
s

(v [s]− v ′[s])|

= γ ‖v − v ′‖∞

Similar proof for T∗.
Since Tπ,T∗ are contraction and there exists unique points vπ, v∗, they
are unique.

26 / 28

(3) How. Part 3: Find optial policy

Next session.

27 / 28

Reference

I Sutton, Richard S., and Andrew G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.

I The notes2by Dr Daniel Murfet

1http://therisingsea.org/notes/mast30026/lecture14.pdf
28 / 28

