Introduction to Reinforcement learning

Tri Nguyen
Oregon State University

August 19, 2021

Reinforcement Learning (RL)

	With teacher	Without teacher
Passive	Supervised Learning	Self-(un)supervised Learning
Active	Reinforcement Learning	Intrinsic Motivation (Exploration)

Table: Tutorial - ICML2021

Learning what-to-do from interaction and optimizing reward.

Problems to cast to RL

and many more...

The Multi-Armed Bandit Problem

Given n bandit machines. You can pull the level of one of them and obsever the result: either nothing or win a fixed amount of cash. Each bandit machine has it owns wining distribution. If you can play M times, what's your strategy to maximize total amount of cash?

- A_{t} as action picked at step t
- R_{t} as reward received at step t
- Action value: $q_{*}(a)=\mathbb{E}\left[R_{t} \mid A_{t}=a\right]$
- Estimate action value at step $t: Q_{t}(a)$

Balancing between exploitation and exploration!

Baseline: ϵ-greedy Algorithm

Estimate $q_{*}(a)$ by $Q_{n}(a)=\frac{R_{1}+R_{2}+\ldots R_{n-1}}{n-1}$

A simple bandit algorithm

Initialize, for $a=1$ to k :

$$
\begin{aligned}
& Q(a) \leftarrow 0 \\
& N(a) \leftarrow 0
\end{aligned}
$$

Loop forever:

$$
\begin{aligned}
& A \leftarrow\left\{\begin{array}{ll}
\arg \max _{a} Q(a) & \text { with probability } 1-\varepsilon \\
\text { a random action } & \text { with probability } \varepsilon
\end{array} \quad\right. \text { (breaking ties randomly) } \\
& R \leftarrow \text { bandit }(A) \\
& N(A) \leftarrow N(A)+1 \\
& Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]
\end{aligned}
$$

Figure: From [Sutton\&Barto]

Variant 1: Optimistic Initial Values

Init $Q(a)$ as a nonzero constant $C>0$.

A simple bandit algorithm

Initialize, for $a=1$ to k :

$$
\begin{aligned}
& Q(a) \leftarrow c \\
& N(a) \leftarrow 0
\end{aligned}
$$

Loop forever:

```
\(A \leftarrow \begin{cases}\operatorname{argmax}_{a} Q(a) & \text { with probability } 1-\varepsilon \quad \text { (breaking ties randomly) } \\ \text { a random action } & \text { with probability } \varepsilon\end{cases}\)
\(R \leftarrow \operatorname{bandit}(A)\)
\(N(A) \leftarrow N(A)+1\)
\(Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]\)
```

Figure: From [Sutton\&Barto]

Variant 2: Upper-Confidence-Bound Action Selection (UCB)

A simple bandit algorithm

Initialize, for $a=1$ to k :

$$
Q(a) \leftarrow 0
$$

$$
N(a) \leftarrow 0
$$

Loop forever:

$$
\begin{aligned}
& A_{t} \doteq \underset{a}{\operatorname{argmax}}\left[Q_{t}(a)+c \sqrt{\frac{\ln t}{N_{t}(a)}}\right] \\
& R \leftarrow \operatorname{bandit}(A) \\
& N(A) \leftarrow N(A)+1 \\
& Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]
\end{aligned}
$$

Figure: From [Sutton\&Barto]

Evaluation

Figure: From [Sutton\&Barto]

- 10-armed bandits
- Each $q_{*}(a) \sim \mathcal{N}(0,1)$
- And then the actual rewards are drawn from \mathcal{N} with a mean $q_{*}(a)$ and unit variance

The results are averages over 2000 trials.

(a) ϵ-greedy v.s Optimistic Initial Value

(b) ϵ-greedy v.s UCB

Note that in both figures, there is a jump around in early part of the curve.

- In the first 10 iterations, all actions are seleted once regardless of actual rewards.
- After that, $Q_{11}(a)$ might estimate $q_{*}(a)$ relatively correct, i.e., $\arg \max _{a} Q_{11}(a)=\arg \max _{a} q_{*}(a)$
- Then it is likely (40%) that an optimal action is picked.

Reinforcement Learning Framework

General question: how to train an agent to archive a goal by interacting with the environment, e.g., train a robot to escape a maze. RL solves it by using the following framework:

Figure: [Sutton\&Barto]
Input of the framework
Environment - Agent interation:

- At time step t, agent at state S_{t} performs an action $A_{t} \in \mathcal{A}\left(S_{t}\right)$
- The environment acts accordingly change to state S_{t+1}, emits a reward R_{t+1}
- Return: $G_{t}=\sum_{k=1}^{\infty} \gamma^{k} R_{t+k+1}$

Output of the framework

An agent that acts on the environment so that it maximizes the expectation of return, i.e., $\mathbb{E}\left[G_{t}\right]$.

Examples of using framework

Figure: Given a position, find a way to reach the red X

Goal: Given a position, find a way to reach the red X

- At time t, state S_{t} is current position
- Agent at state S_{t} can move to any valid directions (direction not break wall)
- Environment dynamic:
- Agent being at the desired position by 1 unit
- Emits a reward of 10 when it reach X, otherwise 0 .
- Return $G_{t}=\sum_{k=1}^{\infty} R_{t+k+1}$. Not that we choose $\gamma=1$, and T is number of time steps until the agent reaches red X

Figure: Given a position, find a way to reach the red X as fast as possible

Goal: Given a position, find a way to reach the red X as fast as possible!

- At time t, state S_{t} is current position
- Agent at state S_{t} can move to any valid directions (direction not break wall)
- Environment dynamic:
- Agent being at the desired position by 1 unit
- Emits a reward of 10 when it reach X, otherwise -1 .
- Return $G_{t}=\sum_{k=1}^{\infty} R_{t+k+1}$.

Not that we choose $\gamma=1$, and T is number of time steps until the agent reaches red X

Cart-Pole Problem

Goal: Keep the pole from falling by moving the card horizontally

- At time t, state S_{t} is a collection of angle, angular speed, position, horizontal vertical
- Agent at state S_{t} can apply a force horizontally to the cart.
- Environment dynamic:
- The pole acts accordingly to physical laws.
- Emits a reward of 1 when the pole is upright, otherwise -10 .
- Once the pole hits ground, there's no way to make it be upright.

Figure: Keep the pole from falling by moving the card horizontally (From Lecture ${ }^{1}$)

Playing chess

Goal: Win as much as possible!

- At time t, state S_{t} is a position of all chess piecies.
- Agent at state S_{t} can apply a valid move of one of its chess pieces.
- Environment dynamic:
- The opponent will move 1 of its piece.
- Emits a reward of 0 when the game is not terminated, otherwise 1 for winning, -1 for losing, 0 for drawing.
- Return $G_{t}=\sum_{k=1}^{\infty} R_{t+k+1}$.

RL Framework

Figure: (ref. Book)

Input of the framework

Environment - Agent interation:

- At time step t, agent at state S_{t} performs an action $A_{t} \in \mathcal{A}_{t}$
- (2) Environment's dynamics. The environment acts accordingly change to state S_{t+1}, emits a reward R_{t+1}
- (1) Episodic/Continuing task. Return: $G_{t}=\sum_{k=1}^{\infty} \gamma^{k} R_{t+k+1}$

Output of the framework
(3) How. An agent that acts on the environment so that it maximizes the expectation of return, i.e., $\mathbb{E}\left[G_{t}\right]$.

(1) Episodic/Continuing tasks

The interation agent-environment produces $S_{1}, A_{1}, R_{2}, S_{2}, A_{2}, R_{3}, \ldots$

Episodic tasks

- The sequence can break natually into subsequences
- Example: playing chess
- Return

$$
G_{t}=\sum_{k=1}^{T} \gamma^{k} R_{t+k+1}, 0 \leq \gamma \leq 1
$$

- There exits a termination state In both cases: $G_{t}=R_{t+1}+\gamma G_{t+1}$.

Continuing tasks

- Otherwise
- Example: Robot with long life span
- Return

$$
G_{t}=\sum_{k=1}^{\infty} \gamma^{k} R_{t+k+1}, 0 \leq \gamma<1
$$

- There is no notion of termination state

(2) Environment's dynamics

Markov decision process (MDP) descibes environment's dynamics

- Finite sets of states, action, rewards $\mathcal{S}, \mathcal{A}, \mathcal{R}$
- Random variables $S_{t} \in \mathcal{S}, R_{t} \in \mathcal{R}$ are only dependent on preceding state and action, i.e., $p\left(s^{\prime}, r \mid s, a\right):=\operatorname{Pr}\left(S_{t}=s^{\prime}, R_{t}=r \mid S_{t-1}=s, A_{t-1}=a\right)$
- Markov property. State must include all information of the past that makes a difference for the future

Example: A recycling robot Describe more Some justication Diff on agent and Env

s	a	s^{\prime}	$p\left(s^{\prime} \mid s, a\right)$	$r\left(s, a, s^{\prime}\right)$
high	search	high	α	$r_{\text {search }}$
high	search	low	$1-\alpha$	$r_{\text {search }}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\text {search }}$
high	wait	high	1	$r_{\text {wait }}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\text {wait }}$
low	recharge	high	1	0
low	recharge	low	0	-

Figure: Example of an MPD

(3) How. Part1: Evaluation - Policy and Value function

- Policy π is a mapping from $\mathcal{S} \longrightarrow \mathcal{D}(a)$ where $\mathcal{D}(a)$ is some probability distribution over action space. If the agent follows policy π,

$$
\pi(a \mid s)=\operatorname{Pr}\left(A_{t}=a \mid S_{t}=s\right)
$$

- Value function of a state under π, denoted $v_{\pi}(s)$, is the expected return when starting in s and following π thereafter, i.e.,

$$
v_{\pi}(s)=\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right]
$$

- We call v_{π} the state-value function for policy π
- Based on that, define the action-value function for policy π as

$$
\begin{aligned}
q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Bellman Equation of Value Function

$$
\begin{aligned}
& v_{\pi}(s) \\
& =\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \mathbb{E}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left[r+\gamma G_{t+1}\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma \mathbb{E}_{\pi}\left[R_{t+2}+\gamma G_{t+2} \mid S_{t+1}=s^{\prime}\right]\right) \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{\pi}\left(s^{\prime}\right)\right)
\end{aligned}
$$

Backup diagram for v_{π}
Figure: Backup operation for state-value function

(3) How. Part 2: Optimal Policies

Definition
A poicy π is defined to be better than or equal to a policy π^{\prime} if its expected return is greater than or equal to that of π^{\prime} for all states. In other words,

$$
\pi \geq \pi^{\prime} \Leftrightarrow v_{\pi}(s) \geq v_{\pi^{\prime}}(s) \text { for all } s \in \mathcal{S}
$$

Definition

π_{*} is the optimal policy if and only if $\pi_{*} \geq \pi$ for any π. Value of optimal policy is called optimal state-value function, denoted v_{*} and defined as

$$
v_{*}(s):=\max _{\pi} v_{\pi}(s), \quad \text { for all } s \in \mathcal{S}
$$

Similarly, $q_{*}(s, a)$ is optimal action-value function and defined as

$$
q_{*}(s, a):=\max _{\pi} q_{\pi}(s, a), \quad \text { for all } s \in \mathcal{S}, a \in \mathcal{A}_{t}
$$

Bellman Optimality Equation

Assume π_{*} exists,

$$
\begin{align*}
v_{*}(s) & =v_{\pi_{*}}(s) \quad \text { (by definition) } \\
& =\max _{a \in \mathcal{A}(s)} q_{\pi_{*}}(a, s) \\
& =\max _{a \in \mathcal{A}(s)} \mathbb{E}_{\pi_{*}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a \in \mathcal{A}(s)} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(s^{\prime}\right) \mid S_{t}=s, A_{t}=a\right] \\
\Rightarrow v_{*}(s) & =\max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{*}\left(s^{\prime}\right)\right) \tag{1}
\end{align*}
$$

Compare to Bellman equation

$$
v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{\pi}\left(s^{\prime}\right)\right)
$$

the equation (1) doesn't depend on any particular policy

Properties regarding Bellman Equations

$$
\begin{gather*}
v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{\pi}\left(s^{\prime}\right)\right) \tag{2}\\
v_{*}(s)=\max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{*}\left(s^{\prime}\right)\right) \tag{3}
\end{gather*}
$$

Remark

- Bellman equation (2) has an unique solution, which is $v_{\pi}(s)$.
- Bellman optimality equation (3) has an unique solution, which is $v_{*}(s)$

Implication:

- Given an optimal value function, greedy policy is the optimal policy, (actions satisfies (3))
- Given an optimal action-value function $q_{*}(s, a)$, the optimal policy is $\arg \max _{a} q_{*}(s, a)$

Sketch proof of Remark 0.1. Define

- A fixed point of a function f is x such that $x=f(x)$
- An function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is called a contraction if there exists $0<\alpha<1$ such that

$$
\left\|f(\boldsymbol{s})-f\left(\boldsymbol{s}^{\prime}\right)\right\|_{p} \leq \alpha\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|_{p}, \quad \text { for some } p \geq 1
$$

1. If f is an α-contraction, then f has an unique fixed point
2. Let $\boldsymbol{v} \in \mathbb{R}^{N}$ be a vector of all value states,

$$
\begin{aligned}
& T_{\pi}(v)[s]:=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{\pi}\left(s^{\prime}\right)\right) \\
& T_{*}(\boldsymbol{v})[s]:=\max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid S_{t}=s, A_{t}=a\right)\left(r+\gamma v_{*}\left(s^{\prime}\right)\right)
\end{aligned}
$$

T_{π}, T_{*} are both contraction.

Step 1

If f is a α-contraction, then f has an unique fixed point.
Proof.
Uniqueness Let $\boldsymbol{s}, \boldsymbol{s}^{\prime}$ are 2 fixed points of f.

$$
\alpha\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|_{p} \geq\left\|f(\boldsymbol{s})-f\left(\boldsymbol{s}^{\prime}\right)\right\|_{p}=\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|_{p}
$$

Since $0<\alpha<1$, this contraction leads to $\boldsymbol{s}=\boldsymbol{s}^{\prime}$. Existence

- Define a sequence of \boldsymbol{s}_{k} such that $\boldsymbol{s}_{k+1}=f\left(\boldsymbol{s}_{k}\right)$

$$
\begin{aligned}
\left\|\boldsymbol{s}_{k+1}-\boldsymbol{s}_{k}\right\|_{p} & =\left\|f\left(\boldsymbol{s}_{k}\right)-f\left(\boldsymbol{s}_{k-1}\right)\right\|_{p} \\
& \leq \alpha\left\|\boldsymbol{s}_{k}-\boldsymbol{s}_{k-1}\right\|_{p}=\alpha\left\|f\left(\boldsymbol{s}_{k-1}\right)-f\left(\boldsymbol{s}_{k-2}\right)\right\|_{p} \\
& \leq \alpha^{2}\left\|\boldsymbol{s}_{k-1}-\boldsymbol{s}_{k-2}\right\|_{p} \leq \ldots \leq \alpha^{k}\left\|\boldsymbol{s}_{1}-\boldsymbol{s}_{0}\right\|_{p}
\end{aligned}
$$

- Intuitively, we can say that $\boldsymbol{s}_{*}=\lim _{k \rightarrow \infty} \boldsymbol{s}_{k}$ for some \boldsymbol{s}_{*}, hence $\boldsymbol{s}_{*}=f\left(\boldsymbol{s}_{*}\right)$. Technically, it involes of showing domain of f is complete and sequence \boldsymbol{s}_{k} is a Cauchy sequence.

Step 2

T_{π} is a γ-contraction with $p=\infty$.
Proof.

$$
\begin{aligned}
\left|T_{\pi}(\boldsymbol{v})[s]-T_{\pi}\left(\boldsymbol{v}^{\prime}\right)[s]\right| & =\left|\sum_{a \in \mathcal{A}(s)} \sum_{s^{\prime}, r} \gamma \pi(a \mid s) p\left(s^{\prime}, r \mid s, a\right)\left(\boldsymbol{v}\left[s^{\prime}\right]-\boldsymbol{v}^{\prime}\left[s^{\prime}\right]\right)\right| \\
& \leq\left|\sum_{a \in \mathcal{A}(s)} \sum_{s^{\prime}, r} \gamma \pi(a \mid s) p\left(s^{\prime}, r \mid s, a\right) \max _{s}\left(\boldsymbol{v}[s]-\boldsymbol{v}^{\prime}[s]\right)\right| \\
& \leq\left|\gamma \max _{s}\left(\boldsymbol{v}[s]-\boldsymbol{v}^{\prime}[s]\right)\right| \\
& =\gamma\left\|\boldsymbol{v}-\boldsymbol{v}^{\prime}\right\|_{\infty}
\end{aligned}
$$

Similar proof for T_{*}.
Since T_{π}, T_{*} are contraction and there exists unique points v_{π}, v_{*}, they are unique.

(3) How. Part 3: Find optial policy

Next session.

Reference

- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
- The notes ${ }^{2}$ by Dr Daniel Murfet
${ }^{1}$ http://therisingsea.org/notes/mast30026/lecture14.pdf

