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Recap: General Setting

▶ From a distribution family P = Nd =
{
N(θ, Id)|θ ∈ Rd

}
, God chooses a distribution

P ∈ P.

▶ A set of N (i.i.d) samples XN
1 are drawn from P , denoted as X.

▶ Task: estimating θ(P ) from given samples.

▶ Quality of estimator θ̂ is measured by Φ(ρ(θ, θ̂))=
∥∥∥θ − θ̂

∥∥∥2, where:
▶ θ = θ(P ) is expectation of P = N(θ, Id)
▶ θ̂ = θ̂(Xn

1 ) is the estimator of interest. Examples: n−1(
∑n

i=1 Xi), X1.
▶ Φ(t)= t2 is a non-decreasing function

▶ ρ(θ, θ̂)=
∥∥∥θ − θ̂

∥∥∥ is a semimetric

▶ Question: What would be the best performance of an ideal estimator in the worse case?

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
Finding exact M() is difficult, instead our attempt is to find a lower bound of it.
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Recap: General Approach to Find Lower Bound

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
▶ Translate to probability (Markov inequality)

inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
≥ Φ(δ) inf

θ̂
sup
P∈P

P(ρ(θ, θ̂) ≥ δ)

▶ Reduce the whole space P to a finite set {θv|v ∈ V}

inf
θ̂

sup
P∈P

P(ρ(θ, θ̂) ≥ δ) ≥ inf
θ̂
max

v
P(ρ(θv, θ̂) ≥ δ)

▶ Reduce to a hypothesis testing error by constructing 2δ-packing set.

inf
θ̂
max

v
P(ρ(θv, θ̂) ≥ δ) ≥ inf

Ψ
max

v
P(v ̸= Ψ(X̃n

1 )),

where Ψ(X̃N
1 ) ≜ argminv ρ(θv, θ̂(X̃

N
1 ))
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Recap

▶ Fano’s method is to switch to the average.

inf
Ψ

max
v

P(v ̸= Ψ(X̃n
1 )) ≥ inf

Ψ

1

|V|
∑
v

P(v ̸= Ψ(X̃N
1 ))

= inf
Ψ

P(V ̸= Ψ(X̃N
1 )), where V is a uniform RV.

Lemma

For any discrete RVs V, V ′ on the same alphabet V ,

P(V ̸= V ′) ≥ 1− I(V ;V ′) + log 2

log |V|

where P is taken with respect to both V, V ′.

▶ There are other alternatives which do not consider RV V [Tsybakov 2009].
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Recap: Fano’s Method - The Recipe

We want to lower bound the RHS of

P(V ̸= V ′) ≥ 1− I(V ;V ′) + log 2

log |V|

by construct a packing set {θv|v ∈ V}, such that

▶ (required) ρ(θv, θv′) ≥ 2δ ∀v, v′ ∈ V
▶ (desired) |V| is large
▶ (desired) I(V ;V ′) is small

▶ In the Gaussian mean estimation example,
|V| ≥ 2d, I(V ;V ′) ≤ O(nδ2).

Two tasks:

▶ Construct packing set.

▶ Lower bound mutual information.
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Minimax Bound in 1-bit Matrix Completion Problem
▶ Given matrix M ∈ K ≜

{
M ∈ Rd1×d2 | ∥M∥∗ ≤ α

√
rd1d2, ∥M∥∞ ≤ α

}
.

▶ A RV Ω ⊂ [d1]× [d2] with E[|Ω|] = n
▶ A differential function f : R → [1, 0] (cdf)
▶ Matrix Y such that

Yij =

{
+1 with probability f(Mij)

−1 with probability 1− f(Mij)

▶ Task: Estimate M given Y ,Ω

▶ Quality measurement: Φ(ρ(M ,M̂)) =
1

d1d2

∥∥∥M − M̂
∥∥∥2
F
.

Theorem (Davenport et al. 2014)

Given a fixed algorithm, there exists M ∈ K such that with probability at least 0.75 (over RV
Y ),

1

d1d2

∥∥∥M − M̂
∥∥∥2
F
≥ min

(
C1, C2α

√
β0.75α

√
rmax(d1, d2)

n

)
= O

(
1√
n

)

Prove by construction!
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Sketch of Proof: Step 1
▶ Construct a set of matrices X = {Xv} indexed by v ∈ V such that

▶ X ⊆ K
▶ ∥Xv −Xv′∥2F ≥ ϵ2, ∀v, v′ ∈ V for some ϵ > 0.

▶ Uniformly choose a V ∈ V, constructing P (·;XV ), draw set XN
1 of N samples from that

P (·;XV ).

▶ Let ψ be the algorithm in the theorem: it uses data Y ,Ω and outputs M̂ .
▶ Let Ψ define as V̂ = Ψ((Y ,Ω)) = argminv∈V ρ(M̂ ,Xv).

By construction,

P(V ̸= V̂ ) = P
(∥∥XV −XV̂

∥∥2
F
≥ ϵ2

)
Hence, the remaining part is to find a bound on the best possible prediction accuracy? i.e,

inf
Ψ

P(V ̸= V̂ ) ≥ q(ϵ)

where P is respect to RVs V,YΩ.
Then we can claim that there exists M , with probability at least q(ϵ),∥∥∥M − M̂

∥∥∥2
F
≥ ϵ2
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Sketch of Proof: Step 2

▶ Find the lower bound of infΨ P(V ̸= V̂ )
▶ Fano’s inequality: For any discrete RVs V, V ′ on the same alphabet V,

P (V ̸= V̂ ) ≥ 1− I(V ; V̂ ) + log 2

logV

▶ I(V ; V̂ ) ≤ I(V ;YΩ) since we have a Markov chain V → YΩ → V̂
▶ Bound the I(V ;YΩ) [Scarlett et al. 2019]

▶ Tensorization if all data points are i.i.d
▶ Otherwise,

I(V ;YΩ) ≤ max
v,v′

Dkl(P (·|v) || P (·|v′))

▶ Upper bound that KL, which is application-dependent. Also, the ϵ should appear in this step.

▶ Integrating everything together, choosing ϵ to have a tight/meaningful bound.
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Step 1: Construct an Attentive Packing set

Lemma

Let γ ≤ 1 be such that r/γ2 ∈ N, and suppose that r/γ2 ≤ d1. There is a set X ⊂ K with

|X | ≥ exp

(
rd2
16γ2

)
with the following properties:

▶ For all X ∈ X , each entry has |Xij | = αγ.

▶ For all X ̸= X ′ ∈ X ,

∥X −X ′∥2F > 0.5α2γ2d1d2
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Proof of the Existence of Packing Set

It is an interesting probabilistic argument.
Consider the following distribution over random matrix X with size of d1 × d2:

▶ Let d′1 ≜ r/γ2(≤ d1).

▶ Matrix X contains multiple blocks of size d′1 × d2.

▶ For the first block, all entries are i.i.d Bernoulli RVs, i.e.,
Xij ∼ Bernoulli(0.5), Xij ∈ {±αγ} ,∀(i, j) ∈ [d′1]× [d2].

▶ For other blocks are just copies of the first block (as much as possible).

We will draw from this distribution to construct set X of

⌈
exp

(
rd2
16γ2

)⌉
elements.

Then X ⊂ K ≜
{
M ∈ Rd1×d2 | ∥M∥∗ ≤ α

√
rd1d2, ∥M∥∞ ≤ α

}
since

▶ ∥X∥∞ = αγ ≤ α

▶ ∥X∥∗ ≤
√
rank(X) ∥X∥F ≤

√
d′1 ∥X∥F =

√
r/γ2

√
d1d2αγ = α

√
rd1d2
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For 2 RVs X,Y followed the above distribution,

∥X − Y ∥2F =
∑
i,j

(Xij − Yij)
2

≥
⌊
d1
d′1

⌋ ∑
i∈[d′

1],j∈[d2]

(Xij − Yij)
2

= 4α2γ2
⌊
d1
d′1

⌋ ∑
i∈[d′

1],j∈[d2]

δij , δij ∼i.i.d Bern(0.5), δij ∈ {0, 1}

Next, with union bound and Hoeffding’s inequality, we obtain,

P

min
X ̸=Y

∑
i∈[d′

1],j∈[d2]

δij ≤ 0.25d′1d2

 ≤
∑
X ̸=Y

P

min
X ̸=Y

∑
i∈[d′

1],j∈[d2]

δij ≤ 0.25d′1d2


≤
(
|X |
2

)
exp (−d′1d2/8)< 1

That means that there is a non-zero probability that we obtain the set X such that

∥X − Y ∥2F ≥ α2γ2
⌊
d1
d′1

⌋
d′1d2 ≥ 0.5α2γ2d1d2
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Step 2: Apply Fano’s Inequality

Let X ′
α/2,γ be the set constructed in the previous Lemma. Construct X as

X ≜
{
X ′ + α

(
1− γ

2

)
1 | X ′ ∈ X ′

α/2,γ

}
,

where γ is chosen as
4
√
2ϵ/α ≤ γ ≤ 8ϵ/α,

and ϵ is chosen such that
∥X −X ′∥2F ≤ 4d1d2ϵ

2

By construction, X ⊂ K (not obvious but easy to show), and |X | =
∣∣∣X ′

α/2,γ

∣∣∣.
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Fano’s Inequality
Now we show that if we choose M ∈ X uniformly

P (V ̸= V̂ ) ≥ 1− maxv,v′ Dkl(P (·|v) || P (·|v′)) + log 2

log |V|

By property of KL divergence of product distributions,

max
v,v′∈V

Dkl(YΩ|v || YΩ|v′) = max
v,v′∈V

∑
(i,j)∈Ω

Dkl(Yij |v || Yij |v′)

▶ All summands are DKL between 2 Bernoulli RVs
▶ They are either 0, Dkl(α||α′), Dkl(α

′||α) (because of our construction of the packing set).

Lemma

For x, y ∈ (0, 1), X ∼ Bern(x), Y ∼ Bern(y). Then

Dkl(x||y) ≤
(x− y)2

y(1− y)
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Using the above Lemma,

Dkl(Yij |v || Yij |v′) ≤
(f(α)− f(α′))2

f(α′)(1− f(α′))

≤ (f ′(ξ))2(α− α′)2

f(α′)(1− f(α′))
for some ξ ∈ [α′, α] (intermediate value theorem)

≤ (γα)2

βα′
(since α′ = (1− γ)α)

≤ 64ϵ2

βα′
(by assumption)

⇒ I(V ; V̂ ) ≤ 64nϵ2

βα′

Hence,

inf
Ψ

P(Ψ(YΩ) ̸= V ) ≥ 1− I(V ; V̂ ) + log 2

log |X |

≥ 1− 1024ϵ2
(
64nϵ2/βα′ + 1

α2rd2

)
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inf
Ψ

P(Ψ(YΩ) ̸= V ) ≥ 1− 1024ϵ2
(
64nϵ2/βα′ + 1

α2rd2

)
Recall that ∥∥∥M − M̂

∥∥∥2
F
≥ 4d1d2ϵ

2

Lastly, choose ϵ so that we get a meaningful bound. Choose

ϵ2 = . . .

then they can conclude that ∥∥∥M − M̂
∥∥∥2
F
≥ O(1/

√
n)

with probability at least 0.75.
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Some Comments

▶ The proof does not take into account RV Ω

▶ Proof of existence of packing set using probabilistic is a nice approach

▶ Data samples does not need to be independent

▶ Fano’s inequality is a key step in the general minimax bound derivation
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