Minimax lower bound for 1-bit Matrix Completion

Tri Nguyen

Reading group - Summer 2022
Oregon State University
October 6, 2022

Main References

- John Duchi. "Lecture notes for statistics 311/electrical engineering 377". In: URL: https://stanford. edu/class/stats311/Lectures/full notes. pdf. Last visited on 2 [2016], p. 23
- Jonathan Scarlett et al. "An introductory guide to Fano's inequality with applications in statistical estimation". In: arXiv preprint arXiv:1901.00555 [2019]
- Alexandre B Tsybakov. Introduction to Nonparametric Estimation. Springer series in statistics. Dordrecht: Springer, 2009. DoI: 10.1007/b13794. URL: https://cds.cern.ch/record/1315296
- Mark A Davenport et al. "1-bit matrix completion". In: Information and Inference: A Journal of the IMA 3.3 [2014], pp. 189-223

Recap: General Setting

- From a distribution family $\mathcal{P}=\mathcal{N}_{d}=\left\{N\left(\theta, I_{d}\right) \mid \theta \in \mathbb{R}^{d}\right\}$, God chooses a distribution $P \in \mathcal{P}$.
- A set of N (i.i.d) samples X_{1}^{N} are drawn from P, denoted as \boldsymbol{X}.
- Task: estimating $\theta(P)$ from given samples.
- Quality of estimator $\widehat{\theta}$ is measured by $\Phi(\rho(\theta, \widehat{\theta}))=\|\theta-\widehat{\theta}\|^{2}$, where:
- $\theta=\theta(P)$ is expectation of $P=N\left(\theta, I_{d}\right)$
- $\widehat{\theta}=\widehat{\theta}\left(X_{1}^{n}\right)$ is the estimator of interest. Examples: $n^{-1}\left(\sum_{i=1}^{n} X_{i}\right), X_{1}$.
- $\Phi(t)=t^{2}$ is a non-decreasing function
- $\rho(\theta, \widehat{\theta})=\|\theta-\hat{\theta}\|$ is a semimetric
- Question: What would be the best performance of an ideal estimator in the worse case?

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

Recap: General Approach to Find Lower Bound

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

- Translate to probability (Markov inequality)

$$
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] \geq \Phi(\delta) \inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)
$$

- Reduce the whole space \mathcal{P} to a finite set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$

$$
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \geq \inf _{\hat{\theta}} \max _{v} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right)
$$

- Reduce to a hypothesis testing error by constructing 2δ-packing set.

$$
\inf _{\widehat{\theta}} \max _{v} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right) \geq \inf _{\Psi} \max _{v} \mathbb{P}\left(v \neq \Psi\left(\widetilde{X}_{1}^{n}\right)\right)
$$

where $\Psi\left(\widetilde{X}_{1}^{N}\right) \triangleq \arg \min _{v} \rho\left(\theta_{v}, \widehat{\theta}\left(\widetilde{X}_{1}^{N}\right)\right)$

Recap

- Fano's method is to switch to the average.

$$
\begin{aligned}
\inf _{\Psi} \max _{v} \mathbb{P}\left(v \neq \Psi\left(\widetilde{X}_{1}^{n}\right)\right) & \geq \inf _{\Psi} \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}\left(v \neq \Psi\left(\widetilde{X}_{1}^{N}\right)\right) \\
& =\inf _{\Psi} \mathbb{P}\left(V \neq \Psi\left(\widetilde{X}_{1}^{N}\right)\right), \quad \text { where } V \text { is a uniform RV. }
\end{aligned}
$$

Lemma

For any discrete $R V_{s} V, V^{\prime}$ on the same alphabet \mathcal{V},

$$
\mathbb{P}\left(V \neq V^{\prime}\right) \geq 1-\frac{I\left(V ; V^{\prime}\right)+\log 2}{\log |\mathcal{V}|}
$$

where \mathbb{P} is taken with respect to both V, V^{\prime}.

- There are other alternatives which do not consider RV V [Tsybakov 2009].

Recap: Fano's Method - The Recipe

We want to lower bound the RHS of

$$
\mathbb{P}\left(V \neq V^{\prime}\right) \geq 1-\frac{I\left(V ; V^{\prime}\right)+\log 2}{\log |\mathcal{V}|}
$$

by construct a packing set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$, such that

- (required) $\rho\left(\theta_{v}, \theta_{v^{\prime}}\right) \geq 2 \delta \quad \forall v, v^{\prime} \in \mathcal{V}$
- (desired) $|\mathcal{V}|$ is large
- (desired) $I\left(V ; V^{\prime}\right)$ is small
- In the Gaussian mean estimation example, $|\mathcal{V}| \geq 2^{d}, I\left(V ; V^{\prime}\right) \leq O\left(n \delta^{2}\right)$.

Two tasks:

- Construct packing set.
- Lower bound mutual information.

Minimax Bound in 1-bit Matrix Completion Problem

- Given matrix $\boldsymbol{M} \in K \triangleq\left\{\boldsymbol{M} \in \mathbb{R}^{d_{1} \times d_{2}} \mid\|\boldsymbol{M}\|_{*} \leq \alpha \sqrt{r d_{1} d_{2}},\|\boldsymbol{M}\|_{\infty} \leq \alpha\right\}$.
- A RV $\Omega \subset\left[d_{1}\right] \times\left[d_{2}\right]$ with $\mathbb{E}[|\Omega|]=n$
- A differential function $f: \mathbb{R} \rightarrow[1,0]$ (cdf)
- Matrix \boldsymbol{Y} such that

$$
Y_{i j}= \begin{cases}+1 & \text { with probability } f\left(M_{i j}\right) \\ -1 & \text { with probability } 1-f\left(M_{i j}\right)\end{cases}
$$

- Task: Estimate \boldsymbol{M} given \boldsymbol{Y}, Ω
- Quality measurement: $\Phi(\rho(\boldsymbol{M}, \widehat{\boldsymbol{M}}))=\frac{1}{d_{1} d_{2}}\|\boldsymbol{M}-\widehat{\boldsymbol{M}}\|_{\mathrm{F}}^{2}$.

Theorem (Davenport et al. 2014)

Given a fixed algorithm, there exists $M \in K$ such that with probability at least 0.75 (over RV Y),

$$
\frac{1}{d_{1} d_{2}}\|\boldsymbol{M}-\widehat{\boldsymbol{M}}\|_{\mathrm{F}}^{2} \geq \min \left(C_{1}, C_{2} \alpha \sqrt{\beta_{0.75 \alpha}} \sqrt{\frac{r \max \left(d_{1}, d_{2}\right)}{n}}\right)=O\left(\frac{1}{\sqrt{n}}\right)
$$

Prove by construction!

Sketch of Proof: Step 1

- Construct a set of matrices $\mathcal{X}=\left\{\boldsymbol{X}_{v}\right\}$ indexed by $v \in \mathcal{V}$ such that
- $\mathcal{X} \subseteq K$
- $\left\|\boldsymbol{X}_{v}-\boldsymbol{X}_{v^{\prime}}\right\|_{\mathrm{F}}^{2} \geq \epsilon^{2}, \quad \forall v, v^{\prime} \in \mathcal{V}$ for some $\epsilon>0$.
- Uniformly choose a $V \in \mathcal{V}$, constructing $P\left(\cdot ; \boldsymbol{X}_{V}\right)$, draw set X_{1}^{N} of N samples from that $P\left(\cdot ; \boldsymbol{X}_{V}\right)$.
- Let ψ be the algorithm in the theorem: it uses data \boldsymbol{Y}, Ω and outputs $\widehat{\boldsymbol{M}}$.
- Let Ψ define as $\widehat{V}=\Psi((\boldsymbol{Y}, \Omega))=\arg \min _{v \in \mathcal{V}} \rho\left(\widehat{\boldsymbol{M}}, \boldsymbol{X}_{v}\right)$.

By construction,

$$
\mathbb{P}(V \neq \widehat{V})=\mathbb{P}\left(\left\|\boldsymbol{X}_{V}-\boldsymbol{X}_{\widehat{V}}\right\|_{\mathrm{F}}^{2} \geq \epsilon^{2}\right)
$$

Hence, the remaining part is to find a bound on the best possible prediction accuracy? i.e,

$$
\inf _{\Psi} \mathbb{P}(V \neq \widehat{V}) \geq q(\epsilon)
$$

where \mathbb{P} is respect to RV s $V, \boldsymbol{Y}_{\Omega}$.
Then we can claim that there exists M, with probability at least $q(\epsilon)$,

$$
\|\boldsymbol{M}-\widehat{\boldsymbol{M}}\|_{\mathrm{F}}^{2} \geq \epsilon^{2}
$$

Sketch of Proof: Step 2

- Find the lower bound of $\inf _{\Psi} \mathbb{P}(V \neq \widehat{V})$
- Fano's inequality: For any discrete $\mathrm{RVs} V, V^{\prime}$ on the same alphabet \mathcal{V},

$$
P(V \neq \widehat{V}) \geq 1-\frac{I(V ; \widehat{V})+\log 2}{\log \mathcal{V}}
$$

- $I(V ; \widehat{V}) \leq I\left(V ; \boldsymbol{Y}_{\Omega}\right)$ since we have a Markov chain $V \rightarrow \boldsymbol{Y}_{\Omega} \rightarrow \widehat{V}$
- Bound the $I\left(V ; \boldsymbol{Y}_{\Omega}\right)$ [Scarlett et al. 2019]
- Tensorization if all data points are i.i.d
- Otherwise,

$$
I\left(V ; \boldsymbol{Y}_{\Omega}\right) \leq \max _{v, v^{\prime}} D_{\mathrm{kl}}\left(P(\cdot \mid v) \| P\left(\cdot \mid v^{\prime}\right)\right)
$$

- Upper bound that KL, which is application-dependent. Also, the ϵ should appear in this step.
- Integrating everything together, choosing ϵ to have a tight/meaningful bound.

Step 1: Construct an Attentive Packing set

Lemma

Let $\gamma \leq 1$ be such that $r / \gamma^{2} \in \mathbb{N}$, and suppose that $r / \gamma^{2} \leq d_{1}$. There is a set $\mathcal{X} \subset K$ with

$$
|\mathcal{X}| \geq \exp \left(\frac{r d_{2}}{16 \gamma^{2}}\right)
$$

with the following properties:

- For all $\boldsymbol{X} \in \mathcal{X}$, each entry has $\left|X_{i j}\right|=\alpha \gamma$.
- For all $\boldsymbol{X} \neq \boldsymbol{X}^{\prime} \in \mathcal{X}$,

$$
\left\|\boldsymbol{X}-\boldsymbol{X}^{\prime}\right\|_{\mathbf{F}}^{2}>0.5 \alpha^{2} \gamma^{2} d_{1} d_{2}
$$

Proof of the Existence of Packing Set

It is an interesting probabilistic argument.
Consider the following distribution over random matrix \boldsymbol{X} with size of $d_{1} \times d_{2}$:

- Let $d_{1}^{\prime} \triangleq r / \gamma^{2}\left(\leq d_{1}\right)$.
- Matrix \boldsymbol{X} contains multiple blocks of size $d_{1}^{\prime} \times d_{2}$.
- For the first block, all entries are i.i.d Bernoulli RVs, i.e., $X_{i j} \sim \operatorname{Bernoulli}(0.5), X_{i j} \in\{ \pm \alpha \gamma\}, \forall(i, j) \in\left[d_{1}^{\prime}\right] \times\left[d_{2}\right]$.
- For other blocks are just copies of the first block (as much as possible).

We will draw from this distribution to construct set \mathcal{X} of $\left\lceil\exp \left(\frac{r d_{2}}{16 \gamma^{2}}\right)\right]$ elements.
Then $\mathcal{X} \subset K \triangleq\left\{\boldsymbol{M} \in \mathbb{R}^{d_{1} \times d_{2}} \mid\|\boldsymbol{M}\|_{*} \leq \alpha \sqrt{r d_{1} d_{2}},\|\boldsymbol{M}\|_{\infty} \leq \alpha\right\}$ since

- $\|\boldsymbol{X}\|_{\infty}=\alpha \gamma \leq \alpha$
- $\|\boldsymbol{X}\|_{*} \leq \sqrt{\operatorname{rank}}(\boldsymbol{X})\|\boldsymbol{X}\|_{\mathrm{F}} \leq \sqrt{d_{1}^{\prime}}\|\boldsymbol{X}\|_{\mathrm{F}}=\sqrt{r / \gamma^{2}} \sqrt{d_{1} d_{2}} \alpha \gamma=\alpha \sqrt{r d_{1} d_{2}}$

For 2 RVs $\boldsymbol{X}, \boldsymbol{Y}$ followed the above distribution,

$$
\begin{aligned}
\|\boldsymbol{X}-\boldsymbol{Y}\|_{\mathrm{F}}^{2} & =\sum_{i, j}\left(X_{i j}-Y_{i j}\right)^{2} \\
& \geq\left\lfloor\frac{d_{1}}{d_{1}^{\prime}} \sum_{i \in\left[d_{1}^{\prime}\right], j \in\left[d_{2}\right]}\left(X_{i j}-Y_{i j}\right)^{2}\right. \\
& =4 \alpha^{2} \gamma^{2}\left\lfloor\frac{d_{1}}{d_{1}^{\prime}}\right\rfloor \sum_{i \in\left[d_{1}^{\prime}\right], j \in\left[d_{2}\right]} \delta_{i j}, \quad \delta_{i j} \sim_{i . i . \mathrm{d}} \operatorname{Bern}(0.5), \delta_{i j} \in\{0,1\}
\end{aligned}
$$

Next, with union bound and Hoeffding's inequality, we obtain,

$$
\begin{aligned}
P\left(\min _{\boldsymbol{X} \neq \boldsymbol{Y}} \sum_{i \in\left[d_{1}^{\prime}\right], j \in\left[d_{2}\right]} \delta_{i j} \leq 0.25 d_{1}^{\prime} d_{2}\right) & \leq \sum_{\boldsymbol{X} \neq \boldsymbol{Y}} P\left(\min _{\boldsymbol{X} \neq \boldsymbol{Y}} \sum_{i \in\left[d_{1}^{\prime}\right], j \in\left[d_{2}\right]} \delta_{i j} \leq 0.25 d_{1}^{\prime} d_{2}\right) \\
& \leq\binom{|\mathcal{X}|}{2} \exp \left(-d_{1}^{\prime} d_{2} / 8\right)<1
\end{aligned}
$$

That means that there is a non-zero probability that we obtain the set \mathcal{X} such that

$$
\|\boldsymbol{X}-\boldsymbol{Y}\|_{\mathrm{F}}^{2} \geq \alpha^{2} \gamma^{2}\left\lfloor\frac{d_{1}}{d_{1}^{\prime}}\right\rfloor d_{1}^{\prime} d_{2} \geq 0.5 \alpha^{2} \gamma^{2} d_{1} d_{2}
$$

Step 2: Apply Fano's Inequality

Let $\mathcal{X}_{\alpha / 2, \gamma}^{\prime}$ be the set constructed in the previous Lemma. Construct \mathcal{X} as

$$
\mathcal{X} \triangleq\left\{\left.\boldsymbol{X}^{\prime}+\alpha\left(1-\frac{\gamma}{2}\right) \mathbf{1} \right\rvert\, \boldsymbol{X}^{\prime} \in \mathcal{X}_{\alpha / 2, \gamma}^{\prime}\right\}
$$

where γ is chosen as

$$
4 \sqrt{2} \epsilon / \alpha \leq \gamma \leq 8 \epsilon / \alpha
$$

and ϵ is chosen such that

$$
\left\|\boldsymbol{X}-\boldsymbol{X}^{\prime}\right\|_{\mathrm{F}}^{2} \leq 4 d_{1} d_{2} \epsilon^{2}
$$

By construction, $\mathcal{X} \subset K$ (not obvious but easy to show), and $|\mathcal{X}|=\left|\mathcal{X}_{\alpha / 2, \gamma}^{\prime}\right|$.

Fano's Inequality

Now we show that if we choose $M \in \mathcal{X}$ uniformly

$$
P(V \neq \widehat{V}) \geq 1-\frac{\max _{v, v^{\prime}} D_{\mathrm{kl}}\left(P(\cdot \mid v) \| P\left(\cdot \mid v^{\prime}\right)\right)+\log 2}{\log |\mathcal{V}|}
$$

By property of KL divergence of product distributions,

$$
\max _{v, v^{\prime} \in \mathcal{V}} D_{\mathrm{kl}}\left(\boldsymbol{Y}_{\Omega}\left|v \| \boldsymbol{Y}_{\Omega}\right| v^{\prime}\right)=\max _{v, v^{\prime} \in \mathcal{V}} \sum_{(i, j) \in \Omega} D_{\mathrm{kl}}\left(Y_{i j}\left|v \| Y_{i j}\right| v^{\prime}\right)
$$

- All summands are D_{KL} between 2 Bernoulli RVs
- They are either $0, D_{\mathrm{kl}}\left(\alpha \| \alpha^{\prime}\right), D_{\mathrm{kl}}\left(\alpha^{\prime} \| \alpha\right)$ (because of our construction of the packing set).

Lemma

For $x, y \in(0,1), X \sim \operatorname{Bern}(x), Y \sim \operatorname{Bern}(y)$. Then

$$
D_{\mathrm{kl}}(x \| y) \leq \frac{(x-y)^{2}}{y(1-y)}
$$

Using the above Lemma,

$$
\begin{aligned}
D_{\mathrm{kl}}\left(Y_{i j}\left|v \| Y_{i j}\right| v^{\prime}\right) & \leq \frac{\left(f(\alpha)-f\left(\alpha^{\prime}\right)\right)^{2}}{f\left(\alpha^{\prime}\right)\left(1-f\left(\alpha^{\prime}\right)\right)} \\
& \leq \frac{\left(f^{\prime}(\xi)\right)^{2}\left(\alpha-\alpha^{\prime}\right)^{2}}{f\left(\alpha^{\prime}\right)\left(1-f\left(\alpha^{\prime}\right)\right)} \quad \text { for some } \xi \in\left[\alpha^{\prime}, \alpha\right] \quad \text { (intermediate value theorem) } \\
& \leq \frac{(\gamma \alpha)^{2}}{\beta_{\alpha^{\prime}}} \quad\left(\text { since } \alpha^{\prime}=(1-\gamma) \alpha\right) \\
& \leq \frac{64 \epsilon^{2}}{\beta_{\alpha^{\prime}}} \quad(\text { by assumption }) \\
& \Rightarrow I(V ; \widehat{V}) \leq \frac{64 n \epsilon^{2}}{\beta_{\alpha^{\prime}}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\inf _{\Psi} \mathbb{P}\left(\Psi\left(\boldsymbol{Y}_{\Omega}\right) \neq V\right) & \geq 1-\frac{I(V ; \widehat{V})+\log 2}{\log |\mathcal{X}|} \\
& \geq 1-1024 \epsilon^{2}\left(\frac{64 n \epsilon^{2} / \beta_{\alpha^{\prime}}+1}{\alpha^{2} r d_{2}}\right)
\end{aligned}
$$

$$
\inf _{\Psi} \mathbb{P}\left(\Psi\left(\boldsymbol{Y}_{\Omega}\right) \neq V\right) \geq 1-1024 \epsilon^{2}\left(\frac{64 n \epsilon^{2} / \beta_{\alpha^{\prime}}+1}{\alpha^{2} r d_{2}}\right)
$$

Recall that

$$
\|\boldsymbol{M}-\widehat{\boldsymbol{M}}\|_{\mathrm{F}}^{2} \geq 4 d_{1} d_{2} \epsilon^{2}
$$

Lastly, choose ϵ so that we get a meaningful bound. Choose

$$
\epsilon^{2}=\ldots
$$

then they can conclude that

$$
\|M-\widehat{\boldsymbol{M}}\|_{\mathrm{F}}^{2} \geq O(1 / \sqrt{n})
$$

with probability at least 0.75 .

Some Comments

- The proof does not take into account RV Ω
- Proof of existence of packing set using probabilistic is a nice approach
- Data samples does not need to be independent
- Fano's inequality is a key step in the general minimax bound derivation

