Minimax lower bound: Fano's method

Tri Nguyen

Reading group - Summer 2022 Oregon State University

October 4, 2022

Let's start with an example

- Given a family of Gaussian $\mathcal{N}_d = \{N(\theta, \sigma^2 I_d) | \theta \in \mathbb{R}^d\}.$
- God chooses a distribution $P \in \mathcal{N}_d$.
- ► A set of *n* i.i.d samples are drawn from *P*.
- Task: estimate the mean θ from n samples.
- Quality of estimator is measured by $\mathbb{E}\left[\left\|\theta \widehat{\theta}\right\|^2\right]$

What could be the best performance in the worse case scenario?

- If d = 1, we can use Cramer-Rao lower bound.
- Sample mean estimator have the error of $\frac{d\sigma^2}{n}$, let's see if this error can be improved.

Setting

- From a distribution family \mathcal{P} , God chooses a distribution $P \in \mathcal{P}$.
- A set of n i.i.d samples X_1^n are drawn from P.
- Task: estimating $\theta(P)$ from given samples.
- Question: What would be the best performance of an ideal estimator in the worse case?
- Quality of estimator is measured by $\Phi(\rho(\theta, \widehat{\theta}))$, where:

•
$$\phi := \phi(P)$$
 is some statistic of P

- $\widehat{\theta} := \widehat{\theta}(X_1^n)$ is some estimator
- $\Phi(\cdot)$ is a non-decreasing function
- $\blacktriangleright \ \rho(\cdot, \cdot)$ is a semimetric

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

Sketch

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$$

1. Translate to probability

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\theta, \widehat{\theta})) \right] \ge \Phi(\delta) \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta)$$

2. Reduce the whole space \mathcal{P} to a finite set $\{\theta_v | v \in \mathcal{V}\}$

$$\sup_{P \in \mathcal{P}} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta)$$

3. Reduce to a hypothesis testing error (required \mathcal{V} to have some properties)

$$\mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta) \ge \mathbb{P}(\Psi(X_1^n) \neq v)$$

4. Finding concrete bound based on specific problems.

Theorem

Assume that there exist $\{P_v \in \mathcal{P} | v \in \mathcal{V}\}, |\mathcal{V}| \leq \infty$ such that for $v \neq v'$, $\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta$. Define

▶ V to be a RV with uniform distribution over V, and given V = v we draw $\widetilde{X}_1^n \sim P_v$.

• For an estimator $\widehat{\theta}$, let $\Psi(X_1^n) := \arg \min_{v \in \mathcal{V}} \rho(\theta(P_v), \widehat{\theta}(X_1^n))$

Then,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V)$$

Some remarks:

- The Xⁿ₁ in the RHS is different from the Xⁿ₁ in the LHS. Xⁿ₁ are never observed and only served for our analysis.
- There's a trade-off in choosing δ .
- ▶ In the following, $\theta_v := \theta(P_v)$, and dependence on \widetilde{X}_1^n might be omitted.

Proof

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$$

1. Translate to probability

$$\begin{split} \sup_{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] &\geq \sup_{P \in \mathcal{P}} \mathbb{E}[\Phi(\delta) I(\rho(\theta, \widehat{\theta}) \geq \delta)] \\ &= \Phi(\delta) \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \end{split}$$

2. Restrict to set of $\{P_v \in \mathcal{P} | v \in \mathcal{V}\}$ where \mathcal{V} is some index set

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta(P), \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta)$$

In detail,

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta(P), \widehat{\theta}(X_1^n)) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta(P_v), \widehat{\theta}(\widetilde{X}_1^n)) \ge \delta)$$

where

 \blacktriangleright X_1^n are observed data which are drawn from unknown P

• \widetilde{X}_1^n are imaginary data drawn from P_v , given that V = v where $V \sim \text{Uniform}(\mathcal{V})$.

3. Now we turn to a hypothesis testing by requiring set $\{\theta_v | v \in \mathcal{V}\}$ to be a 2δ -packing set, i.e,

$$\rho(\theta_v, \theta_{v'}) \ge 2\delta \quad \forall v \neq v'$$

Figure: From Dr.John Duchi's notes

$$\begin{aligned} & \operatorname{Recall} \ \Psi(X_1^n) := \arg\min_{v \in \mathcal{V}} \rho(\theta_v, \widehat{\theta}(X_1^n)). \\ & \operatorname{Since} \ \Psi(\widetilde{X}_1^n) \neq v \Rightarrow \rho(\theta_v, \widehat{\theta}) \geq \delta, \\ & \Rightarrow \quad \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \geq \delta) \geq \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq v) \end{aligned}$$

Hence,

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}(\rho(\theta_{v}, \widehat{\theta}) \ge \delta)$$
$$\ge \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \neq v)$$
$$= \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \neq V)$$
$$\Rightarrow \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \neq V)$$

 $\Rightarrow \mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(X_1^n) \neq V)$

Local Fano

Lemma (Derived from Fano inequality)

$$\inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V) \ge 1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|}$$

Hence,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|} \right)$$

Mutual Information to KL

For $X_1^n \sim P_v, v \sim \mathsf{Uni}(\mathcal{V})$. Define

$$\overline{P} = \frac{1}{|\mathcal{V}|} \sum_{v} P_{v}$$

then

$$\begin{split} I(V; X_1^n) &= D_{\mathrm{kl}} \left(\mathbb{P}_{(V, X_1^n)} || \mathbb{P}_V \mathbb{P}_{X_1^n} \right) = \sum_{v} \sum_{X_1^n} \mathbb{P}(v, x_1^n) \log \frac{\mathbb{P}(v, x_1^n)}{\mathbb{P}(v) \mathbb{P}(x_1^n)} \\ &= \sum_{v} \mathbb{P}(v) \sum_{X_1^n} \mathbb{P}(x_1^n | v) \log \frac{\mathbb{P}(x_1^n | v)}{\mathbb{P}(x_1^n)} \\ &= \sum_{v} \mathbb{P}(v) D_{\mathrm{kl}} \left(P_v || \overline{P} \right) \\ &= \frac{1}{|\mathcal{V}|} \sum_{v} D_{\mathrm{kl}} (P_v || \overline{P}) \\ &\leq \frac{1}{|\mathcal{V}|^2} \sum_{v, v'} D_{\mathrm{kl}} (P_v || P_{v'}) (\text{concavity of log}) \end{split}$$

How to use: A Recipe

$$\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_{1}^{n}) + \log 2}{\log |\mathcal{V}|} \right)$$

$$I(V; \widetilde{\mathcal{X}}_{1}^{n}) \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v' \in \mathcal{V}} D_{kl}(P_{v}||D_{v'})$$

$$(2)$$

- ▶ Construct a packing set $\{\theta_v | v \in \mathcal{V}\}$ and then apply inequality (1)
 - ▶ It needs to satisfy $D_{\rm kl}(P_v||P_{v'}) \leq f(\delta)$ for some f
 - And |V| need to be large.
- Compute the bound $I(V; \widetilde{X}_1^n)$ as a function of δ using (2)
- \blacktriangleright Choose an optimal δ

How to use: Example

Example. Given the family $\mathcal{N}_d = \{N(\theta; \sigma^2 I_d) \mid \theta \in \mathbb{R}^d\}$. The task is to estimate the mean $\theta(P)$ for some $P \in \mathcal{N}_n$ given X_1^n samples drawn i.i.d from P. We wish to find out the lower bound of minimax error in term of mean-squared error.

Solution. Let's construct the local packing set $\{\theta_v | v \in \mathcal{V}\}$:

- ▶ Let \mathcal{V} be a 1/2-packing of unit ℓ_2 -ball where $|\mathcal{V}| \geq 2^d$. It is guaranteed that such \mathcal{V} exists.
- Then our $\delta/2$ -packing set is $\{\delta v \in \mathbb{R}^d | v \in \mathcal{V}\}$, since

$$\|\theta_v - \theta_{v'}\|_2 = \delta \, \|v - v'\|_2 \geq \frac{\delta}{2} \quad \text{(since \mathcal{V} is a $1/2$-packing set)}$$

Apply our bound,

$$\begin{aligned} \mathcal{M}_{n}(\theta(\mathcal{N}_{d}), \left\|\cdot\right\|^{2}) &\geq \Psi(\delta) \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right) \\ &\geq \left(\frac{1}{2} \frac{\delta}{2}\right)^{2} \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right) \\ &= \frac{\delta^{2}}{16} \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right) \end{aligned}$$

And,

$$\begin{split} I(V; X_1^n) &\leq \frac{1}{\left|\mathcal{V}\right|^2} \sum_{v,v'} D_{\mathrm{kl}}(P_v^n || P_{v'}^n) \\ &= \frac{1}{\left|\mathcal{V}\right|^2} \sum_{v,v'} n D_{\mathrm{kl}} \left(N(\delta v, \sigma^2 I_d), N(\delta v', \sigma^2 I_d) \right) \\ &= n D_{\mathrm{kl}} \left(N(\delta v, \sigma^2 I_d), N(\delta v', \sigma^2 I_d) \right) \\ &= n \frac{\delta^2}{2\sigma^2} \left\| v - v' \right\|^2 \leq \frac{n\delta^2}{2\sigma^2} \end{split}$$

Let's combine these 2 inequalities above,

$$\mathcal{M}_n(heta(\mathcal{N}_d), \left\|\cdot
ight\|^2) \geq rac{\delta^2}{16} \left(1 - rac{n\delta^2}{2\sigma^2} + \log 2 \over d\log 2}
ight)$$

That bound's optimal value is achieved at $\delta^2 = \frac{(d-1)\sigma^2 \log 2}{n}$, and the optimal value is

$$\frac{(d-1)^2 \sigma^2 \log 2}{32dn} \Rightarrow O\left(\frac{d\sigma^2}{n}\right)$$

Proof of the claim on packing number

Claim: There exists a 1/2-packing set of unit ℓ_2 -ball with cardinality at least 2^d . Proof:

- ► A δ -packing of the set Θ with respect to ρ is a set $\{\theta_1, \ldots, \theta_M\}, \theta_i \in \Theta, i = 1, \ldots, N$ such that $\rho(\theta_v, \theta_{v'}) \ge \delta \ \forall v \neq v'$.
- Then δ -packing number is

 $M(\delta,\Theta,\rho) = \sup \left\{ M \in \mathbb{N} : \text{there exists a } \delta \text{-packing } \{\theta_1,\ldots,\theta_M\} \text{ of } \Theta \right\}$

We have

$$\begin{cases} M(\delta, \Theta, \rho) \ge N(\delta, \Theta, \rho) \\ N(\delta, \mathbb{B}, \|\cdot\|) \ge (1/\delta)^d \end{cases} \Rightarrow M(1/2, \mathbb{B}, \|\cdot\|) \ge 2^d \end{cases}$$

- For the first inequality, denote Θ̂ be a δ-packing of Θ with size of M(δ, Θ, ρ). Since there is no θ ∈ Θ we can add to Θ̂ such that ρ(θ, θ̂) ≥ δ, Θ̂ is also a δ-covering of Θ.
- \blacktriangleright For the second inequality, let $\{v_1,\ldots,v_N\}$ as a $\delta\text{-covering}$ of $\mathbb B,$ then

$$\mathsf{Vol}(\mathbb{B}(\mathbf{0},1)) \leq \sum_{i=1}^{N} \mathsf{Vol}(\mathbb{B}(v_i,\delta)) = N \mathsf{Vol}(\mathbb{B}(v_1,\delta)) = N \delta^d \mathsf{Vol}(\mathbb{B}(\mathbf{0},1))$$

Proof of the bound on mutual information

Proposition (Fano inequality)

For any Markov chain $V \to X \to \widehat{V},$ we have

$$h_2(\mathbb{P}(\widehat{V} \neq V)) + \mathbb{P}(\widehat{V} \neq V)\log(|\mathcal{V}| - 1) \ge H(V|\widehat{V})$$

where $h_2(p) = -p \log(p) - (1-p) \log(1-p)$ is entropy of a Bernoulli RV with parameter p.

Apply this proposition for V being a uniform RV over \mathcal{V} ,

$$H(V|\widehat{V}) = H(V) - I(V;\widehat{V}) = \log |\mathcal{V}| - I(V;\widehat{V}) \ge \log |\mathcal{V}| - I(V;X)$$

Hence,

$$\begin{split} \log 2 + \mathbb{P}(V \neq \widehat{V}) \log(|\mathcal{V}|) &> \log h_2(\mathbb{P}(V \neq \widehat{V})) + \mathbb{P}(V \neq \widehat{V}) \log(|\mathcal{V}| - 1) \\ &\geq H(V|\widehat{V}) \\ &\geq \log |\mathcal{V}| - I(V;X) \end{split}$$

$$\Rightarrow \mathbb{P}(V \neq \widehat{V}) \ge 1 - \frac{I(V; X) + \log 2}{\log |\mathcal{V}|}$$
^{15/23}

Proof of Fano Inequality Let E = 1 be the event $V \neq \hat{V}$, E = 0 otherwise. We have

$$\begin{split} H(V,E|\widehat{V}) &= H(V|E,\widehat{V}) + H(E|\widehat{V}) \quad \text{(chain rule)} \\ &= \mathbb{P}(E=1)H(V|E=1,\widehat{V}) + \mathbb{P}(E=0)H(V|E=0,\widehat{V}) + H(E|\widehat{V}) \\ &= \mathbb{P}(E=1)H(V|E=1,\widehat{V}) + H(E|\widehat{V}) \end{split}$$

We also have

$$H(V, E|\widehat{V}) = H(E|V, \widehat{V}) + H(V|\widehat{V})$$
$$= H(V|\widehat{V})$$

Hence,

$$H(V|\widehat{V}) = \mathbb{P}(E = 1)H(V|E = 1, \widehat{V}) + H(E|\widehat{V})$$

$$\leq \mathbb{P}(E = 1)\log|\mathcal{V} - 1| + H(E)$$

$$= \mathbb{P}(V \neq \widehat{V})\log(|\mathcal{V}| - 1) + h_2(\mathbb{P}(V \neq \widehat{V}))$$

A variant: Distance-based Fano method

The previous derivation requires a construction of a packing set to translate to a hypothesis testing error.

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V)$$

The main reason is (derived) Fano's inequality:

$$\mathbb{P}(\widehat{V} \neq V) \ge 1 - \frac{I(V; X_1^n) + \log 2}{\log |\mathcal{V}|}$$

We can bound minimax without explicitly constructing packing set.

$$\mathbb{P}(\rho_{\mathcal{V}}(\widehat{V}, V) > t) \ge 1 - \frac{I(V; X_1^n) + \log 2}{\log(|\mathcal{V}| / N_t^{\max})}$$

Then,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi\left(\frac{\delta(t)}{2}\right) \left[1 - \frac{I(X; V) + \log 2}{\log \frac{|\mathcal{V}|}{N_t^{\max}}}\right]$$

where

$$\delta(t) := \sup \left\{ \delta | \rho(\theta_v, \theta_{v'}) \ge \delta \quad \text{for all } v, v' \in \mathcal{V} \text{ such that } \rho_{\mathcal{V}}(v, v') > t \right\}$$

Intentional Blank

Setting

- From a distribution family $\mathcal{P} = \mathcal{N}_d = \{N(\theta, I_d) | \theta \in \mathbb{R}^d\}$, God chooses a distribution $P \in \mathcal{P}$
- \blacktriangleright A set of n i.i.d samples X_1^n are drawn from P.
- Task: estimating $\theta(P)$ from given samples.
- Quality of estimator $\hat{\theta}$ is measured by $\Phi(\rho(\theta, \hat{\theta})) = \left\| \theta \hat{\theta} \right\|^2$, where:

 - $\theta = \theta(P)$ is expectation of $P = N(\theta, I_d)$ $\hat{\theta} = \hat{\theta}(X_1^n)$ is the estimator of interest. Examples: $n^{-1}(\sum_{i=1}^n X_i), X_1$.
 - $\Phi(t) = t^2$ is a non-decreasing function
 - $\rho(\theta, \widehat{\theta}) = \left\| \theta \widehat{\theta} \right\|$ is a semimetric

Question: What would be the best performance of an ideal estimator in the worse case? $\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{\mathcal{P} \subset \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

General Approach to Find Lower Bound

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$$

1. Translate to probability

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\theta, \widehat{\theta})) \right] \geq \Phi(\delta) \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)$$

2. Reduce the whole space \mathcal{P} to a finite set $\{\theta_v | v \in \mathcal{V}\}$

$$\sup_{P \in \mathcal{P}} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta)$$

3. Reduce to a hypothesis testing error. For $V \sim \mathcal{U}(\mathcal{V})$ (required \mathcal{V} to have some properties)

$$\mathbb{P}(\rho(\theta_V, \widehat{\theta}) \ge \delta) \ge \mathbb{P}(\Psi(X_1^n) \ne V)$$

4. Finding concrete bound based on specific problems.

How to use: A Recipe

$$\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_{1}^{n}) + \log 2}{\log |\mathcal{V}|} \right)$$

$$I(V; \widetilde{\mathcal{X}}_{1}^{n}) \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v' \in \mathcal{V}} D_{kl}(P_{v}||D_{v'})$$
(4)

- Construct a packing set $\{\theta_v | v \in \mathcal{V}\}.$
 - And $|\mathcal{V}|$ need to be large.
 - Example: $|\mathcal{V}| \geq 2^d$
- Evaluate or upper bound $D_{kl}(P_v||P_{v'})$.
 - Example: $I(V; \widetilde{X}_1^n) \leq O(n\delta^2)$

Theorem

Assume that there exist $\{P_v \in \mathcal{P} | v \in \mathcal{V}\}, |\mathcal{V}| \leq \infty$ such that for $v \neq v'$, $\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta$. Define

 \triangleright V to be a RV with uniform distribution over V, and given V = v we draw $\widetilde{X}_1^n \sim P_v$.

• For an estimator
$$\widehat{\theta}$$
, let $\Psi(X_1^n) := \arg\min_{v \in \mathcal{V}} \rho(\theta(P_v), \widehat{\theta}(X_1^n))$

Then,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V)$$

Lemma (Derived from Fano inequality)

$$\inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V) \ge 1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|}$$

Some remarks:

- The X_1^n in the RHS is different from the \widetilde{X}_1^n in the LHS. \widetilde{X}_1^n are never observed and only served for our analysis.
- Choosing δ to obtain optimal lower bound.

Local Fano

Lemma (Derived from Fano inequality)

$$\inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq V) \ge 1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|}$$

Hence,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|} \right)$$