Minimax lower bound: Fano's method

Tri Nguyen

Reading group - Summer 2022
Oregon State University
October 4, 2022

Let's start with an example

- Given a family of Gaussian $\mathcal{N}_{d}=\left\{N\left(\theta, \sigma^{2} I_{d}\right) \mid \theta \in \mathbb{R}^{d}\right\}$.
- God chooses a distribution $P \in \mathcal{N}_{d}$.
- A set of n i.i.d samples are drawn from P.
- Task: estimate the mean θ from n samples.
- Quality of estimator is measured by $\mathbb{E}\left[\|\theta-\widehat{\theta}\|^{2}\right]$

What could be the best performance in the worse case scenario?

- If $d=1$, we can use Cramer-Rao lower bound.
- Sample mean estimator have the error of $\frac{d \sigma^{2}}{n}$, let's see if this error can be improved.

Setting

- From a distribution family \mathcal{P}, God chooses a distribution $P \in \mathcal{P}$.
- A set of n i.i.d samples X_{1}^{n} are drawn from P.
- Task: estimating $\theta(P)$ from given samples.
- Question: What would be the best performance of an ideal estimator in the worse case?
- Quality of estimator is measured by $\Phi(\rho(\theta, \widehat{\theta}))$, where:
- $\phi:=\phi(P)$ is some statistic of P
- $\widehat{\theta}:=\widehat{\theta}\left(X_{1}^{n}\right)$ is some estimator
- $\Phi(\cdot)$ is a non-decreasing function
- $\rho(\cdot, \cdot)$ is a semimetric

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

Sketch

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

1. Translate to probability

$$
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] \geq \Phi(\delta) \inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)
$$

2. Reduce the whole space \mathcal{P} to a finite set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$

$$
\sup _{P \in \mathcal{P}} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \geq \frac{1}{|\mathcal{V}|} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right)
$$

3. Reduce to a hypothesis testing error (required \mathcal{V} to have some properties)

$$
\mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right) \geq \mathbb{P}\left(\Psi\left(X_{1}^{n}\right) \neq v\right)
$$

4. Finding concrete bound based on specific problems.

Theorem

Assume that there exist $\left\{P_{v} \in \mathcal{P} \mid v \in \mathcal{V}\right\},|\mathcal{V}| \leq \infty$ such that for $v \neq v^{\prime}, \rho\left(\theta\left(P_{v}\right), \theta\left(P_{v^{\prime}}\right)\right) \geq 2 \delta$. Define

- V to be a $R V$ with uniform distribution over \mathcal{V}, and given $V=v$ we draw $\widetilde{X}_{1}^{n} \sim P_{v}$.
- For an estimator $\widehat{\theta}$, let $\Psi\left(X_{1}^{n}\right):=\arg \min _{v \in \mathcal{V}} \rho\left(\theta\left(P_{v}\right), \widehat{\theta}\left(X_{1}^{n}\right)\right)$

Then,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right)
$$

Some remarks:

- The X_{1}^{n} in the RHS is different from the \widetilde{X}_{1}^{n} in the LHS. \widetilde{X}_{1}^{n} are never observed and only served for our analysis.
- There's a trade-off in choosing δ.
- In the following, $\theta_{v}:=\theta\left(P_{v}\right)$, and dependence on \widetilde{X}_{1}^{n} might be omitted.

Proof

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

1. Translate to probability

$$
\begin{aligned}
\sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] & \geq \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\delta) I(\rho(\theta, \widehat{\theta}) \geq \delta)] \\
& =\Phi(\delta) \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)
\end{aligned}
$$

2. Restrict to set of $\left\{P_{v} \in \mathcal{P} \mid v \in \mathcal{V}\right\}$ where \mathcal{V} is some index set

$$
\sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta(P), \widehat{\theta}) \geq \delta) \geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right)
$$

In detail,

$$
\sup _{P \in \mathcal{P}} \mathbb{P}\left(\rho\left(\theta(P), \widehat{\theta}\left(X_{1}^{n}\right)\right) \geq \delta\right) \geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}\left(\rho\left(\theta\left(P_{v}\right), \widehat{\theta}\left(\widetilde{X}_{1}^{n}\right)\right) \geq \delta\right)
$$

where

- X_{1}^{n} are observed data which are drawn from unknown P
- \widetilde{X}_{1}^{n} are imaginary data drawn from P_{v}, given that $V=v$ where $V \sim \operatorname{Uniform}(\mathcal{V})$.

3. Now we turn to a hypothesis testing by requiring set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$ to be a 2δ-packing set, i.e,

$$
\rho\left(\theta_{v}, \theta_{v^{\prime}}\right) \geq 2 \delta \quad \forall v \neq v^{\prime}
$$

Figure: From Dr.John Duchi's notes

Recall $\Psi\left(X_{1}^{n}\right):=\arg \min _{v \in \mathcal{V}} \rho\left(\theta_{v}, \widehat{\theta}\left(X_{1}^{n}\right)\right)$.
Since $\Psi\left(\widetilde{X}_{1}^{n}\right) \neq v \Rightarrow \rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta$,

$$
\Rightarrow \quad \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right) \geq \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq v\right)
$$

Hence,

$$
\begin{aligned}
& \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \geq \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right) \\
& \geq \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq v\right) \\
&=\mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right) \\
& \Rightarrow \inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \geq \inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right) \\
& \Rightarrow \mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right)
\end{aligned}
$$

Local Fano

Lemma (Derived from Fano inequality)

$$
\inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right) \geq 1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}
$$

Hence,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \phi(\delta)\left(1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right)
$$

Mutual Information to KL

For $X_{1}^{n} \sim P_{v}, v \sim \operatorname{Uni}(\mathcal{V})$. Define

$$
\bar{P}=\frac{1}{|\mathcal{V}|} \sum_{v} P_{v}
$$

then

$$
\begin{aligned}
I\left(V ; X_{1}^{n}\right)=D_{\mathrm{kl}}\left(\mathbb{P}_{\left(V, X_{1}^{n}\right)} \| \mathbb{P}_{V} \mathbb{P}_{X_{1}^{n}}\right) & =\sum_{v} \sum_{X_{1}^{n}} \mathbb{P}\left(v, x_{1}^{n}\right) \log \frac{\mathbb{P}\left(v, x_{1}^{n}\right)}{\mathbb{P}(v) \mathbb{P}\left(x_{1}^{n}\right)} \\
& =\sum_{v} \mathbb{P}(v) \sum_{X_{1}^{n}} \mathbb{P}\left(x_{1}^{n} \mid v\right) \log \frac{\mathbb{P}\left(x_{1}^{n} \mid v\right)}{\mathbb{P}\left(x_{1}^{n}\right)} \\
& =\sum_{v} \mathbb{P}(v) D_{\mathrm{kl}}\left(P_{v}| | \bar{P}\right) \\
& =\frac{1}{|\mathcal{V}|} \sum_{v} D_{\mathrm{kl}}\left(P_{v}| | \bar{P}\right) \\
& \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v^{\prime}} D_{\mathrm{kl}}\left(P_{v} \| P_{v^{\prime}}\right)(\text { concavity of log) }
\end{aligned}
$$

How to use: A Recipe

$$
\begin{align*}
& \mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \phi(\delta)\left(1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right) \tag{1}\\
& I\left(V ; \widetilde{\mathcal{X}}_{1}^{n}\right) \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v^{\prime} \in \mathcal{V}} D_{\mathrm{kl}}\left(P_{v} \| D_{v^{\prime}}\right) \tag{2}
\end{align*}
$$

*. Construct a packing set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$ and then apply inequality (1)

- It needs to satisfy $D_{\mathrm{kl}}\left(P_{v} \| P_{v^{\prime}}\right) \leq f(\delta)$ for some f
- And $|\mathcal{V}|$ need to be large.
- Compute the bound $I\left(V ; \widetilde{X}_{1}^{n}\right)$ as a function of δ using (2)
- Choose an optimal δ

How to use: Example

Example. Given the family $\mathcal{N}_{d}=\left\{N\left(\theta ; \sigma^{2} I_{d}\right) \mid \theta \in \mathbb{R}^{d}\right\}$. The task is to estimate the mean $\theta(P)$ for some $P \in \mathcal{N}_{n}$ given X_{1}^{n} samples drawn i.i.d from P. We wish to find out the lower bound of minimax error in term of mean-squared error.
Solution. Let's construct the local packing set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$:

- Let \mathcal{V} be a $1 / 2$-packing of unit ℓ_{2}-ball where $|\mathcal{V}| \geq 2^{d}$. It is guaranteed that such \mathcal{V} exists.
- Then our $\delta / 2$-packing set is $\left\{\delta v \in \mathbb{R}^{d} \mid v \in \mathcal{V}\right\}$, since

$$
\left\|\theta_{v}-\theta_{v^{\prime}}\right\|_{2}=\delta\left\|v-v^{\prime}\right\|_{2} \geq \frac{\delta}{2} \quad(\text { since } \mathcal{V} \text { is a } 1 / 2 \text {-packing set })
$$

Apply our bound,

$$
\begin{aligned}
\mathcal{M}_{n}\left(\theta\left(\mathcal{N}_{d}\right),\|\cdot\|^{2}\right) & \geq \Psi(\delta)\left(1-\frac{I\left(V ; X_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right) \\
& \geq\left(\frac{1}{2} \frac{\delta}{2}\right)^{2}\left(1-\frac{I\left(V ; X_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right) \\
& =\frac{\delta^{2}}{16}\left(1-\frac{I\left(V ; X_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right)
\end{aligned}
$$

And,

$$
\begin{aligned}
I\left(V ; X_{1}^{n}\right) & \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v^{\prime}} D_{\mathrm{kl}}\left(P_{v}^{n}| | P_{v^{\prime}}^{n}\right) \\
& =\frac{1}{|\mathcal{V}|^{2}} \sum_{v, v^{\prime}} n D_{\mathrm{kl}}\left(N\left(\delta v, \sigma^{2} I_{d}\right), N\left(\delta v^{\prime}, \sigma^{2} I_{d}\right)\right) \\
& =n D_{\mathrm{kl}}\left(N\left(\delta v, \sigma^{2} I_{d}\right), N\left(\delta v^{\prime}, \sigma^{2} I_{d}\right)\right) \\
& =n \frac{\delta^{2}}{2 \sigma^{2}}\left\|v-v^{\prime}\right\|^{2} \leq \frac{n \delta^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Let's combine these 2 inequalities above,

$$
\mathcal{M}_{n}\left(\theta\left(\mathcal{N}_{d}\right),\|\cdot\|^{2}\right) \geq \frac{\delta^{2}}{16}\left(1-\frac{\frac{n \delta^{2}}{2 \sigma^{2}}+\log 2}{d \log 2}\right)
$$

That bound's optimal value is achieved at $\delta^{2}=\frac{(d-1) \sigma^{2} \log 2}{n}$, and the optimal value is

$$
\frac{(d-1)^{2} \sigma^{2} \log 2}{32 d n} \Rightarrow O\left(\frac{d \sigma^{2}}{n}\right)
$$

Proof of the claim on packing number

Claim: There exists a $1 / 2$-packing set of unit ℓ_{2}-ball with cardinality at least 2^{d}. Proof:

- A δ-packing of the set Θ with respect to ρ is a set $\left\{\theta_{1}, \ldots, \theta_{M}\right\}, \theta_{i} \in \Theta, i=1, \ldots, N$ such that $\rho\left(\theta_{v}, \theta_{v^{\prime}}\right) \geq \delta \forall v \neq v^{\prime}$.
- Then δ-packing number is

$$
M(\delta, \Theta, \rho)=\sup \left\{M \in \mathbb{N}: \text { there exists a } \delta \text {-packing }\left\{\theta_{1}, \ldots, \theta_{M}\right\} \text { of } \Theta\right\}
$$

We have

$$
\left\{\begin{array}{l}
M(\delta, \Theta, \rho) \geq N(\delta, \Theta, \rho) \\
N(\delta, \mathbb{B},\|\cdot\|) \geq(1 / \delta)^{d}
\end{array} \Rightarrow M(1 / 2, \mathbb{B},\|\cdot\|) \geq 2^{d}\right.
$$

- For the first inequality, denote $\widehat{\Theta}$ be a δ-packing of Θ with size of $M(\delta, \Theta, \rho)$. Since there is no $\theta \in \Theta$ we can add to $\widehat{\Theta}$ such that $\rho(\theta, \widehat{\theta}) \geq \delta, \widehat{\Theta}$ is also a δ-covering of Θ.
- For the second inequality, let $\left\{v_{1}, \ldots, v_{N}\right\}$ as a δ-covering of \mathbb{B}, then

$$
\operatorname{Vol}(\mathbb{B}(\mathbf{0}, 1)) \leq \sum_{i=1}^{N} \operatorname{Vol}\left(\mathbb{B}\left(v_{i}, \delta\right)\right)=N \operatorname{Vol}\left(\mathbb{B}\left(v_{1}, \delta\right)\right)=N \delta^{d} \operatorname{Vol}(\mathbb{B}(\mathbf{0}, 1))
$$

Proof of the bound on mutual information

Proposition (Fano inequality)

For any Markov chain $V \rightarrow X \rightarrow \widehat{V}$, we have

$$
h_{2}(\mathbb{P}(\widehat{V} \neq V))+\mathbb{P}(\widehat{V} \neq V) \log (|\mathcal{V}|-1) \geq H(V \mid \widehat{V})
$$

where $h_{2}(p)=-p \log (p)-(1-p) \log (1-p)$ is entropy of a Bernoulli $R V$ with parameter p.
Apply this proposition for V being a uniform RV over \mathcal{V},

$$
H(V \mid \widehat{V})=H(V)-I(V ; \widehat{V})=\log |\mathcal{V}|-I(V ; \widehat{V}) \geq \log |\mathcal{V}|-I(V ; X)
$$

Hence,

$$
\begin{aligned}
& \log 2+\mathbb{P}(V \neq \widehat{V}) \log (|\mathcal{V}|)>\log h_{2}(\mathbb{P}(V \neq \widehat{V}))+\mathbb{P}(V \neq \widehat{V}) \log (|\mathcal{V}|-1) \\
& \geq H(V \mid \widehat{V}) \\
& \geq \log |\mathcal{V}|-I(V ; X) \\
& \Rightarrow \mathbb{P}(V \neq \widehat{V}) \geq 1-\frac{I(V ; X)+\log 2}{\log |\mathcal{V}|}
\end{aligned}
$$

Proof of Fano Inequality

Let $E=1$ be the event $V \neq \widehat{V}, E=0$ otherwise. We have

$$
\begin{aligned}
H(V, E \mid \widehat{V}) & =H(V \mid E, \widehat{V})+H(E \mid \widehat{V}) \quad \text { (chain rule) } \\
& =\mathbb{P}(E=1) H(V \mid E=1, \widehat{V})+\mathbb{P}(E=0) H(V \mid E=0, \widehat{V})+H(E \mid \widehat{V}) \\
& =\mathbb{P}(E=1) H(V \mid E=1, \widehat{V})+H(E \mid \widehat{V})
\end{aligned}
$$

We also have

$$
\begin{aligned}
H(V, E \mid \widehat{V}) & =H(E \mid V, \widehat{V})+H(V \mid \widehat{V}) \\
& =H(V \mid \widehat{V})
\end{aligned}
$$

Hence,

$$
\begin{aligned}
H(V \mid \widehat{V}) & =\mathbb{P}(E=1) H(V \mid E=1, \widehat{V})+H(E \mid \widehat{V}) \\
& \leq \mathbb{P}(E=1) \log |\mathcal{V}-1|+H(E) \\
& =\mathbb{P}(V \neq \widehat{V}) \log (|\mathcal{V}|-1)+h_{2}(\mathbb{P}(V \neq \widehat{V}))
\end{aligned}
$$

A variant: Distance-based Fano method

The previous derivation requires a construction of a packing set to translate to a hypothesis testing error.

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right)
$$

The main reason is (derived) Fano's inequality:

$$
\mathbb{P}(\widehat{V} \neq V) \geq 1-\frac{I\left(V ; X_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}
$$

We can bound minimax without explicitly constructing packing set.

$$
\mathbb{P}(\rho \mathcal{V}(\widehat{V}, V)>t) \geq 1-\frac{I\left(V ; X_{1}^{n}\right)+\log 2}{\log \left(|\mathcal{V}| / N_{t}^{\max }\right)}
$$

Then,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi\left(\frac{\delta(t)}{2}\right)\left[1-\frac{I(X ; V)+\log 2}{\log \frac{|\mathcal{V}|}{N_{t}^{\max }}}\right]
$$

where

$$
\delta(t):=\sup \left\{\delta \mid \rho\left(\theta_{v}, \theta_{v^{\prime}}\right) \geq \delta \quad \text { for all } v, v^{\prime} \in \mathcal{V} \text { such that } \rho_{\mathcal{V}}\left(v, v^{\prime}\right)>t\right\}
$$

Intentional Blank

Setting

- From a distribution family $\mathcal{P}=\mathcal{N}_{d}=\left\{N\left(\theta, I_{d}\right) \mid \theta \in \mathbb{R}^{d}\right\}$, God chooses a distribution $P \in \mathcal{P}$.
- A set of n i.i.d samples X_{1}^{n} are drawn from P.
- Task: estimating $\theta(P)$ from given samples.
- Quality of estimator $\widehat{\theta}$ is measured by $\Phi(\rho(\theta, \widehat{\theta}))=\|\theta-\widehat{\theta}\|^{2}$, where:
- $\theta=\theta(P)$ is expectation of $P=N\left(\theta, I_{d}\right)$
- $\widehat{\theta}=\widehat{\theta}\left(X_{1}^{n}\right)$ is the estimator of interest. Examples: $n^{-1}\left(\sum_{i=1}^{n} X_{i}\right), X_{1}$.
- $\Phi(t)=t^{2}$ is a non-decreasing function
- $\rho(\theta, \widehat{\theta})=\|\theta-\widehat{\theta}\|$ is a semimetric
- Question: What would be the best performance of an ideal estimator in the worse case?

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

General Approach to Find Lower Bound

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho):=\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))]
$$

1. Translate to probability

$$
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] \geq \Phi(\delta) \inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)
$$

2. Reduce the whole space \mathcal{P} to a finite set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$

$$
\sup _{P \in \mathcal{P}} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \geq \frac{1}{|\mathcal{V}|} \mathbb{P}\left(\rho\left(\theta_{v}, \widehat{\theta}\right) \geq \delta\right)
$$

3. Reduce to a hypothesis testing error. For $V \sim \mathcal{U}(\mathcal{V})$ (required \mathcal{V} to have some properties)

$$
\mathbb{P}\left(\rho\left(\theta_{V}, \widehat{\theta}\right) \geq \delta\right) \geq \mathbb{P}\left(\Psi\left(X_{1}^{n}\right) \neq V\right)
$$

4. Finding concrete bound based on specific problems.

How to use: A Recipe

$$
\begin{align*}
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) & \geq \Phi(\delta)\left(1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right) \tag{3}\\
I\left(V ; \widetilde{\mathcal{X}}_{1}^{n}\right) & \leq \frac{1}{|\mathcal{V}|^{2}} \sum_{v, v^{\prime} \in \mathcal{V}} D_{\mathrm{kl}}\left(P_{v} \| D_{v^{\prime}}\right) \tag{4}
\end{align*}
$$

- Construct a packing set $\left\{\theta_{v} \mid v \in \mathcal{V}\right\}$.
- And $|\mathcal{V}|$ need to be large.
- Example: $|\mathcal{V}| \geq 2^{d}$
- Evaluate or upper bound $D_{\mathrm{kl}}\left(P_{v} \| P_{v^{\prime}}\right)$.
- Example: $I\left(V ; \widetilde{X}_{1}^{n}\right) \leq O\left(n \delta^{2}\right)$

Theorem

Assume that there exist $\left\{P_{v} \in \mathcal{P} \mid v \in \mathcal{V}\right\},|\mathcal{V}| \leq \infty$ such that for $v \neq v^{\prime}, \rho\left(\theta\left(P_{v}\right), \theta\left(P_{v^{\prime}}\right)\right) \geq 2 \delta$. Define

- V to be a $R V$ with uniform distribution over \mathcal{V}, and given $V=v$ we draw $\widetilde{X}_{1}^{n} \sim P_{v}$.
- For an estimator $\hat{\theta}$, let $\Psi\left(X_{1}^{n}\right):=\arg \min _{v \in \mathcal{V}} \rho\left(\theta\left(P_{v}\right), \widehat{\theta}\left(X_{1}^{n}\right)\right)$

Then,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right)
$$

Lemma (Derived from Fano inequality)

$$
\inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right) \geq 1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}
$$

Some remarks:

- The X_{1}^{n} in the RHS is different from the \widetilde{X}_{1}^{n} in the LHS. \widetilde{X}_{1}^{n} are never observed and only served for our analysis.
- Choosing δ to obtain optimal lower bound.

Local Fano

Lemma (Derived from Fano inequality)

$$
\inf _{\Psi} \mathbb{P}\left(\Psi\left(\widetilde{X}_{1}^{n}\right) \neq V\right) \geq 1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}
$$

Hence,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \phi(\delta)\left(1-\frac{I\left(V ; \widetilde{X}_{1}^{n}\right)+\log 2}{\log |\mathcal{V}|}\right)
$$

