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Let’s start with an example

▶ Given a family of Gaussian Nd =
{
N(θ, σ2Id)|θ ∈ Rd

}
.

▶ God chooses a distribution P ∈ Nd.

▶ A set of n i.i.d samples are drawn from P .

▶ Task: estimate the mean θ from n samples.

▶ Quality of estimator is measured by E
[∥∥∥θ − θ̂

∥∥∥2]
What could be the best performance in the worse case scenario?

▶ If d = 1, we can use Cramer-Rao lower bound.

▶ Sample mean estimator have the error of
dσ2

n
, let’s see if this error can be improved.
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Setting

▶ From a distribution family P, God chooses a distribution P ∈ P.

▶ A set of n i.i.d samples Xn
1 are drawn from P .

▶ Task: estimating θ(P ) from given samples.

▶ Question: What would be the best performance of an ideal estimator in the worse case?

▶ Quality of estimator is measured by Φ(ρ(θ, θ̂)), where:
▶ ϕ := ϕ(P ) is some statistic of P
▶ θ̂ := θ̂(Xn

1 ) is some estimator
▶ Φ(·) is a non-decreasing function
▶ ρ(·, ·) is a semimetric

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
Finding exact M() is difficult, instead our attempt is to find a lower bound of it.
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Sketch

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
1. Translate to probability

inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
≥ Φ(δ) inf

θ̂
sup
P∈P

P(ρ(θ, θ̂) ≥ δ)

2. Reduce the whole space P to a finite set {θv|v ∈ V}

sup
P∈P

∑
v∈V

P(ρ(θ, θ̂) ≥ δ) ≥ 1

|V|
P(ρ(θv, θ̂) ≥ δ)

3. Reduce to a hypothesis testing error (required V to have some properties)

P(ρ(θv, θ̂) ≥ δ) ≥ P(Ψ(Xn
1 ) ̸= v)

4. Finding concrete bound based on specific problems.
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Theorem

Assume that there exist {Pv ∈ P|v ∈ V} , |V| ≤ ∞ such that for v ̸= v′, ρ(θ(Pv), θ(Pv′)) ≥ 2δ.
Define

▶ V to be a RV with uniform distribution over V, and given V = v we draw X̃n
1 ∼ Pv.

▶ For an estimator θ̂, let Ψ(Xn
1 ) := argminv∈V ρ(θ(Pv), θ̂(X

n
1 ))

Then,
Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf

Ψ
P(Ψ(X̃n

1 ) ̸= V )

Some remarks:

▶ The Xn
1 in the RHS is different from the X̃n

1 in the LHS. X̃n
1 are never observed and only

served for our analysis.

▶ There’s a trade-off in choosing δ.

▶ In the following, θv := θ(Pv), and dependence on X̃n
1 might be omitted.
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Proof

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
1. Translate to probability

sup
P∈P

E[Φ(ρ(θ, θ̂))] ≥ sup
P∈P

E[Φ(δ)I(ρ(θ, θ̂) ≥ δ)]

= Φ(δ) sup
P∈P

P(ρ(θ, θ̂) ≥ δ)

2. Restrict to set of {Pv ∈ P|v ∈ V} where V is some index set

sup
P∈P

P(ρ(θ(P ), θ̂) ≥ δ) ≥ 1

|V|
∑
v∈V

P(ρ(θv, θ̂) ≥ δ)

In detail,

sup
P∈P

P(ρ(θ(P ), θ̂(Xn
1 )) ≥ δ) ≥ 1

|V|
∑
v∈V

P(ρ(θ(Pv), θ̂(X̃
n
1 )) ≥ δ)

where
▶ Xn

1 are observed data which are drawn from unknown P
▶ X̃n

1 are imaginary data drawn from Pv, given that V = v where V ∼ Uniform(V).
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3. Now we turn to a hypothesis testing by requiring set {θv|v ∈ V} to be a 2δ-packing set,
i.e,

ρ(θv, θv′) ≥ 2δ ∀v ̸= v′

Figure: From Dr.John Duchi’s notes

Recall Ψ(Xn
1 ) := argminv∈V ρ(θv, θ̂(X

n
1 )).

Since Ψ(X̃n
1 ) ̸= v ⇒ ρ(θv, θ̂) ≥ δ,

⇒ P(ρ(θv, θ̂) ≥ δ) ≥ P(Ψ(X̃n
1 ) ̸= v)
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Hence,

sup
P∈P

P(ρ(θ, θ̂) ≥ δ) ≥ 1

|V|
∑
v

P(ρ(θv, θ̂) ≥ δ)

≥ 1

|V|
∑
v

P(Ψ(X̃n
1 ) ̸= v)

= P(Ψ(X̃n
1 ) ̸= V )

⇒ inf
θ̂

sup
P∈P

P(ρ(θ, θ̂) ≥ δ) ≥ inf
Ψ

P(Ψ(X̃n
1 ) ̸= V )

⇒ Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X̃n
1 ) ̸= V )
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Local Fano

Lemma (Derived from Fano inequality)

inf
Ψ

P(Ψ(X̃n
1 ) ̸= V ) ≥ 1− I(V ; X̃n

1 ) + log 2

log |V|

Hence,

Mn(θ(P),Φ ◦ ρ) ≥ ϕ(δ)

(
1− I(V ; X̃n

1 ) + log 2

log |V|

)
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Mutual Information to KL
For Xn

1 ∼ Pv, v ∼ Uni(V). Define
P =

1

|V|
∑
v

Pv

then

I(V ;Xn
1 ) = Dkl

(
P(V,Xn

1 )||PV PXn
1

)
=
∑
v

∑
Xn

1

P(v, xn
1 ) log

P(v, xn
1 )

P(v)P(xn
1 )

=
∑
v

P(v)
∑
Xn

1

P(xn
1 |v) log

P(xn
1 |v)

P(xn
1 )

=
∑
v

P(v)Dkl

(
Pv||P

)
=

1

|V|
∑
v

Dkl(Pv||P )

≤ 1

|V|2
∑
v,v′

Dkl(Pv||Pv′)(concavity of log)
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How to use: A Recipe

Mn(θ(P),Φ ◦ ρ) ≥ ϕ(δ)

(
1− I(V ; X̃n

1 ) + log 2

log |V|

)
(1)

I(V ; X̃n
1 ) ≤

1

|V|2
∑

v,v′∈V
Dkl(Pv||Dv′) (2)

4.▶ Construct a packing set {θv|v ∈ V} and then apply inequality (1)
▶ It needs to satisfy Dkl(Pv||Pv′) ≤ f(δ) for some f
▶ And |V| need to be large.

▶ Compute the bound I(V ; X̃n
1 ) as a function of δ using (2)

▶ Choose an optimal δ
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How to use: Example
Example. Given the family Nd =

{
N(θ;σ2Id) | θ ∈ Rd

}
. The task is to estimate the mean

θ(P ) for some P ∈ Nn given Xn
1 samples drawn i.i.d from P . We wish to find out the lower

bound of minimax error in term of mean-squared error.
Solution. Let’s construct the local packing set {θv|v ∈ V}:
▶ Let V be a 1/2-packing of unit ℓ2-ball where |V| ≥ 2d. It is guaranteed that such V exists.
▶ Then our δ/2-packing set is

{
δv ∈ Rd|v ∈ V

}
, since

∥θv − θv′∥2 = δ ∥v − v′∥2 ≥ δ

2
(since V is a 1/2-packing set)

Apply our bound,

Mn(θ(Nd), ∥·∥2) ≥ Ψ(δ)

(
1− I(V ;Xn

1 ) + log 2

log |V|

)
≥
(
1

2

δ

2

)2(
1− I(V ;Xn

1 ) + log 2

log |V|

)
=

δ2

16

(
1− I(V ;Xn

1 ) + log 2

log |V|

)
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And,

I(V ;Xn
1 ) ≤

1

|V|2
∑
v,v′

Dkl(P
n
v ||Pn

v′)

=
1

|V|2
∑
v,v′

nDkl

(
N(δv, σ2Id), N(δv′, σ2Id)

)
= nDkl

(
N(δv, σ2Id), N(δv′, σ2Id)

)
= n

δ2

2σ2
∥v − v′∥2 ≤ nδ2

2σ2

Let’s combine these 2 inequalities above,

Mn(θ(Nd), ∥·∥2) ≥
δ2

16

1−

nδ2

2σ2
+ log 2

d log 2


That bound’s optimal value is achieved at δ2 =

(d− 1)σ2 log 2

n
, and the optimal value is

(d− 1)2σ2 log 2

32dn
⇒ O

(
dσ2

n

)
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Proof of the claim on packing number
Claim: There exists a 1/2-packing set of unit ℓ2-ball with cardinality at least 2d.
Proof:
▶ A δ-packing of the set Θ with respect to ρ is a set {θ1, . . . , θM} , θi ∈ Θ, i = 1, . . . , N

such that ρ(θv, θv′) ≥ δ ∀v ̸= v′.
▶ Then δ-packing number is

M(δ,Θ, ρ) = sup {M ∈ N : there exists a δ-packing {θ1, . . . , θM} of Θ }

We have {
M(δ,Θ, ρ) ≥ N(δ,Θ, ρ)

N(δ,B, ∥·∥) ≥ (1/δ)d
⇒ M(1/2,B, ∥·∥) ≥ 2d

▶ For the first inequality, denote Θ̂ be a δ-packing of Θ with size of M(δ,Θ, ρ). Since there

is no θ ∈ Θ we can add to Θ̂ such that ρ(θ, θ̂) ≥ δ, Θ̂ is also a δ-covering of Θ.
▶ For the second inequality, let {v1, . . . , vN} as a δ-covering of B, then

Vol(B(0, 1)) ≤
N∑
i=1

Vol(B(vi, δ)) = NVol(B(v1, δ)) = NδdVol(B(0, 1))
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Proof of the bound on mutual information

Proposition (Fano inequality)

For any Markov chain V → X → V̂ , we have

h2(P(V̂ ̸= V )) + P(V̂ ̸= V ) log(|V| − 1) ≥ H(V |V̂ )

where h2(p) = −p log(p)− (1− p) log(1− p) is entropy of a Bernoulli RV with parameter p.

Apply this proposition for V being a uniform RV over V,
H(V |V̂ ) = H(V )− I(V ; V̂ ) = log |V| − I(V ; V̂ ) ≥ log |V| − I(V ;X)

Hence,

log 2 + P(V ̸= V̂ ) log(|V|) > log h2(P(V ̸= V̂ )) + P(V ̸= V̂ ) log(|V| − 1)

≥ H(V |V̂ )

≥ log |V| − I(V ;X)

⇒ P(V ̸= V̂ ) ≥ 1− I(V ;X) + log 2
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Proof of Fano Inequality
Let E = 1 be the event V ̸= V̂ , E = 0 otherwise. We have

H(V,E|V̂ ) = H(V |E, V̂ ) +H(E|V̂ ) (chain rule)

= P(E = 1)H(V |E = 1, V̂ ) + P(E = 0)H(V |E = 0, V̂ ) +H(E|V̂ )

= P(E = 1)H(V |E = 1, V̂ ) +H(E|V̂ )

We also have

H(V,E|V̂ ) = H(E|V, V̂ ) +H(V |V̂ )

= H(V |V̂ )

Hence,

H(V |V̂ ) = P(E = 1)H(V |E = 1, V̂ ) +H(E|V̂ )

≤ P(E = 1) log |V − 1|+H(E)

= P(V ̸= V̂ ) log(|V| − 1) + h2(P(V ̸= V̂ ))
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A variant: Distance-based Fano method
The previous derivation requires a construction of a packing set to translate to a hypothesis
testing error.

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X̃n
1 ) ̸= V )

The main reason is (derived) Fano’s inequality:

P(V̂ ̸= V ) ≥ 1− I(V ;Xn
1 ) + log 2

log |V|
We can bound minimax without explicitly constructing packing set.

P(ρV(V̂ , V ) > t) ≥ 1− I(V ;Xn
1 ) + log 2

log(|V| /Nmax
t )

Then,

Mn(θ(P),Φ ◦ ρ) ≥ Φ

(
δ(t)

2

)1− I(X;V ) + log 2

log
|V|

Nmax
t


where

δ(t) := sup {δ|ρ(θv, θv′) ≥ δ for all v, v′ ∈ V such that ρV(v, v
′) > t}
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Intentional Blank

18 / 23



Setting

▶ From a distribution family P = Nd =
{
N(θ, Id)|θ ∈ Rd

}
, God chooses a distribution

P ∈ P.

▶ A set of n i.i.d samples Xn
1 are drawn from P .

▶ Task: estimating θ(P ) from given samples.

▶ Quality of estimator θ̂ is measured by Φ(ρ(θ, θ̂))=
∥∥∥θ − θ̂

∥∥∥2, where:
▶ θ = θ(P ) is expectation of P = N(θ, Id)
▶ θ̂ = θ̂(Xn

1 ) is the estimator of interest. Examples: n−1(
∑n

i=1 Xi), X1.
▶ Φ(t)= t2 is a non-decreasing function

▶ ρ(θ, θ̂)=
∥∥∥θ − θ̂

∥∥∥ is a semimetric

▶ Question: What would be the best performance of an ideal estimator in the worse case?

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
Finding exact M() is difficult, instead our attempt is to find a lower bound of it.
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General Approach to Find Lower Bound

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
1. Translate to probability

inf
θ̂

sup
P∈P

E
[
Φ(ρ(θ, θ̂))

]
≥ Φ(δ) inf

θ̂
sup
P∈P

P(ρ(θ, θ̂) ≥ δ)

2. Reduce the whole space P to a finite set {θv|v ∈ V}

sup
P∈P

∑
v∈V

P(ρ(θ, θ̂) ≥ δ) ≥ 1

|V|
P(ρ(θv, θ̂) ≥ δ)

3. Reduce to a hypothesis testing error. For V ∼ U(V) (required V to have some properties)

P(ρ(θV , θ̂) ≥ δ) ≥ P(Ψ(Xn
1 ) ̸= V )

4. Finding concrete bound based on specific problems.

20 / 23



How to use: A Recipe

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

(
1− I(V ; X̃n

1 ) + log 2

log |V|

)
(3)

I(V ; X̃n
1 ) ≤

1

|V|2
∑

v,v′∈V
Dkl(Pv||Dv′) (4)

▶ Construct a packing set {θv|v ∈ V}.
▶ And |V| need to be large.
▶ Example: |V| ≥ 2d

▶ Evaluate or upper bound Dkl(Pv||Pv′).

▶ Example: I(V ; X̃n
1 ) ≤ O(nδ2)
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Theorem

Assume that there exist {Pv ∈ P|v ∈ V} , |V| ≤ ∞ such that for v ̸= v′, ρ(θ(Pv), θ(Pv′)) ≥ 2δ.
Define

▶ V to be a RV with uniform distribution over V, and given V = v we draw X̃n
1 ∼ Pv.

▶ For an estimator θ̂, let Ψ(Xn
1 ) := argminv∈V ρ(θ(Pv), θ̂(X

n
1 ))

Then,
Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf

Ψ
P(Ψ(X̃n

1 ) ̸= V )

Lemma (Derived from Fano inequality)

inf
Ψ

P(Ψ(X̃n
1 ) ̸= V ) ≥ 1− I(V ; X̃n

1 ) + log 2

log |V|

Some remarks:
▶ The Xn

1 in the RHS is different from the X̃n
1 in the LHS. X̃n

1 are never observed and only
served for our analysis.

▶ Choosing δ to obtain optimal lower bound.
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Local Fano

Lemma (Derived from Fano inequality)

inf
Ψ

P(Ψ(X̃n
1 ) ̸= V ) ≥ 1− I(V ; X̃n

1 ) + log 2

log |V|

Hence,

Mn(θ(P),Φ ◦ ρ) ≥ ϕ(δ)

(
1− I(V ; X̃n

1 ) + log 2

log |V|

)
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