# Direct Preference Optimization 

Tri Nguyen

Oregon State University
February 7, 2024

## Alignment problem

- Human preference of a response $\boldsymbol{y}$ given a prompt $\boldsymbol{x}$ is measured by $r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y}) \geq 0$.
- $r\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)>r\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)$ means $\boldsymbol{y}_{1}$ is more preferred than $\boldsymbol{y}_{2}$.
- Objective: given a trained language model $\pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x})$, fine-tune it so that
- The outputs are aligned with human preference, while
- Retaining the original model's generation skill.

A realized objective function:

$$
\begin{equation*}
\underset{\boldsymbol{\theta}}{\operatorname{maximize}} \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\mathfrak{\natural}}}(\boldsymbol{x}, \boldsymbol{y})\right]-\beta \underset{\boldsymbol{x} \sim \mathcal{D}}{\mathbb{E}}\left[D_{\mathrm{kl}}\left(\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \| \pi^{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x})\right)\right] \tag{1}
\end{equation*}
$$

## Issues

1. $r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})$ is unknown.
2. Problem (1) is "hard" to optimize due to the involvement of $\boldsymbol{\theta}$ in $\boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})$ under expectation.

## The RL from Human Feedback approach [Ziegere et al 2019]

- Estimate the score function $r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})$
- Finetune the LLM model by optimizing the original objective function using the learned $r_{\phi^{\star}}$.


## Fixing Issue 1: Specifying Preference Model

In hope of learning $r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})$, we have to specify some model, and then obtain some samples. Preference Bradley-Terry model:

- Given $L$ items, item $i$ has a score $s_{i}>0$.
- It models a binary result of an event $i$ beats $j$ as a Bernoulli RV with parameter

$$
\operatorname{Pr}(i \succ j)=\frac{s_{i}}{s_{i}+s_{j}}, \quad \forall i, j \in[L] .
$$

In our LLM context,

$$
\operatorname{Pr}\left(\boldsymbol{y}_{1} \succ \boldsymbol{y}_{2} \mid \boldsymbol{x}\right)=\frac{\exp \left(r_{\phi^{\natural}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)}{\exp \left(r_{\phi^{\natural}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)+\exp \left(r_{\phi^{\natural}}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)\right)}=\sigma\left(r_{\phi^{\natural}}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)-r_{\phi^{\natural}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right) .
$$

Under this model, the MLE objective is [Ziegler et al. 2019]
$\underset{\phi}{\operatorname{minimize}}$

$$
\underset{\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \sim \mathcal{D}}{\mathbb{E}}\left[I\left[\boldsymbol{y}_{1} \succ \boldsymbol{y}_{2}\right] \sigma\left(r_{\phi}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)-r_{\phi}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)+I\left[\boldsymbol{y}_{2} \succ \boldsymbol{y}_{1}\right] \sigma\left(r_{\boldsymbol{\phi}}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)-r_{\phi}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)\right],
$$

But there is no guarantee of learning the true $r_{\phi^{\natural}}$.

## Fixing Issue 2:

Now we have learned $r_{\phi^{\star}}$, the objective is

$$
\begin{aligned}
& \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\star}}(\boldsymbol{x}, \boldsymbol{y})\right]-\beta \underset{\boldsymbol{x} \sim \mathcal{D}}{\mathbb{E}}\left[D_{\mathrm{kl}}\left(\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \| \pi_{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x})\right)\right] \\
& =\underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\star}}(\boldsymbol{x}, \boldsymbol{y})-\beta\left(\log \left(\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})\right)-\log \left(\pi_{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x})\right)\right)\right] \\
& =\underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})\right] .
\end{aligned}
$$

This is a standard objective used in RL (policy gradient), hence can be solved using off-the-shelf tools such as PPO.

## A new approach

Rafael Rafailov et al. "Direct preference optimization: Your language model is secretly a reward model". In: arXiv preprint arXiv:2305.18290 [2023]

$$
\begin{equation*}
\underset{\pi_{\boldsymbol{\theta}}}{\operatorname{maximize}} \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\mathfrak{\natural}}}(\boldsymbol{x}, \boldsymbol{y})\right]-\underset{\boldsymbol{x} \sim \mathcal{D}}{\mathbb{E}}\left[D_{\mathrm{kl}}\left(\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \| \pi_{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x})\right)\right] \tag{2}
\end{equation*}
$$

This problem has "closed-form" solution:

$$
\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x})=\frac{1}{Z(\boldsymbol{x})} \pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x}) \exp \left(\frac{1}{\beta} r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})\right)
$$

Note that RL people already known this, but this result is not very helpful due to the intractability of $Z(x)$.

## Proof of optimal policy

$$
\begin{aligned}
& \underset{\pi_{\boldsymbol{\theta}}}{\arg \max } \text { Objective }=\underset{\pi_{\boldsymbol{\theta}}}{\arg \max } \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y})\right]-\beta \underset{\boldsymbol{x} \sim \mathcal{D}}{\mathbb{E}}\left[D_{\mathrm{kl}}\left(\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \| \pi_{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x})\right)\right] \\
& =\underset{\pi_{\boldsymbol{\theta}}}{\arg \max } \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y})-\beta \log \frac{\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x})}\right] \\
& =\underset{\pi_{\boldsymbol{\theta}}}{\arg \min } \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[\log \frac{\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x})}-\frac{1}{\beta} r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y})\right] \\
& =\underset{\pi_{\boldsymbol{\theta}}}{\arg \min } \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[\log \frac{\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})}{\frac{1}{Z(\boldsymbol{x})} \pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x}) \exp \left(r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y}) / \beta\right)}-\log Z(\boldsymbol{x})\right] \\
& =\underset{\pi_{\boldsymbol{\theta}}}{\arg \min } \underset{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}{\mathbb{E}}\left[\log \frac{\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})}{\frac{1}{Z(\boldsymbol{x})} \pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x}) \exp \left(r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y}) / \beta\right)}\right],
\end{aligned}
$$

where $\frac{1}{Z(\boldsymbol{x})}=\sum_{\boldsymbol{y}} \pi_{\text {ref }}(\boldsymbol{y} \mid \boldsymbol{x}) \exp \frac{r_{\boldsymbol{\phi}^{\natural}}(\boldsymbol{x}, \boldsymbol{y})}{\beta}$.

And therefore, the optimal value is 0 and optimal solution is

$$
\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x})=\frac{1}{Z(\boldsymbol{x})} \pi_{\mathrm{ref}}(\boldsymbol{y} \mid \boldsymbol{x}) \exp \frac{r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})}{\beta} .
$$

Now we can express the unknown score function $r()$ in terms of optimal solution $\pi^{\star}$, hence allow us to reduce the unknown to only $\pi^{\star}$.

$$
r_{\phi^{\natural}}(\boldsymbol{x}, \boldsymbol{y})=\beta \log \frac{\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x})}{\left.\pi_{\text {ref }} \boldsymbol{y} \mid \boldsymbol{x}\right)}+\beta \log Z(\boldsymbol{x})
$$

Then with the preference model, we can derive the MLE objective to find that optimal $\pi^{\star}$.

- Under the Bradley-Terry model, observing dataset $\left[\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{1 i}, \boldsymbol{y}_{2 i}\right)\right]_{1}^{n}$, the MLE objective is

$$
\begin{aligned}
& \underset{\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \sim \mathcal{D}}{\mathbb{E}} {\left[I\left[\boldsymbol{y}_{1} \succ \boldsymbol{y}_{2}\right] \sigma\left(r_{\boldsymbol{\phi}}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)-r_{\boldsymbol{\phi}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)+I\left[\boldsymbol{y}_{2} \succ \boldsymbol{y}_{1}\right] \sigma\left(r_{\boldsymbol{\phi}}\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)-r_{\boldsymbol{\phi}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)\right)\right] } \\
&=\underset{\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \sim \mathcal{D}}{ } \\
& \mathbb{E} {\left[I\left[\boldsymbol{y}_{1} \succ \boldsymbol{y}_{2}\right] \sigma\left(\beta \log \frac{\pi_{\boldsymbol{\phi}}\left(\boldsymbol{y}_{1} \mid \boldsymbol{x}\right)}{\pi_{\mathrm{ref}}\left(\boldsymbol{y}_{1} \mid \boldsymbol{x}\right)}-\beta \log \frac{\pi_{\boldsymbol{\phi}}\left(\boldsymbol{y}_{2} \mid \boldsymbol{x}\right)}{\pi_{\mathrm{ref}}\left(\boldsymbol{y}_{2} \mid \boldsymbol{x}\right)}\right)\right.} \\
&\left.+I\left[\boldsymbol{y}_{2} \succ \boldsymbol{y}_{1}\right] \sigma\left(\beta \log \frac{\pi_{\phi}\left(\boldsymbol{y}_{2} \mid \boldsymbol{x}\right)}{\pi_{\mathrm{ref}}\left(\boldsymbol{y}_{2} \mid \boldsymbol{x}\right)}-\beta \log \frac{\pi_{\boldsymbol{\phi}}\left(\boldsymbol{y}_{1} \mid \boldsymbol{x}\right)}{\pi_{\mathrm{ref}}\left(\boldsymbol{y}_{1} \mid \boldsymbol{x}\right)}\right) .\right]
\end{aligned}
$$

In other words, we are parameterizing the unknown score function $r(\boldsymbol{x}, \boldsymbol{y})=\log \pi_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})-\log \pi_{\text {ref }}(\boldsymbol{x}, \boldsymbol{y})$ to guarantee that the optimal solution of problem (1) is $\pi_{\boldsymbol{\theta}}$.

## Control setting

We want to finetune a LM model such that it always produce positive reviews.
IMDb Sentiment Generation


## Control setting - My try

- Dataset: IMDB, ~ 20k reviews
- True score function is given by a sentiment classifier (a pretrained large network)
- $\pi_{\text {ref }}$ : Fine-tuning gpt2-large (1.4B params) on unlabeled IMDB
- For PPO, we provide the true score function.
- For DPO, given a prompt, we sample 4 responses for each prompt, and create 6 preference pairs.

Table: About an hour training for each method

|  | $\pi_{\text {ref }}$ | $\pi_{\text {ppo }}$ | $\pi_{\text {dpo }}$ |
| :---: | :---: | :---: | :---: |
| Sentiment score | 0.625 | 0.86 | 0.99 |
| KL | 0. | 1.7 | -26.6 |

Result on other tasks

## Extensions

- Assuming preference pairs are noisy due to annotator's imperfection,

$$
\begin{aligned}
& z \sim \operatorname{Bern}\left(\sigma\left(r\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)-r\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)\right)\right) \\
& \ell \sim \operatorname{Pr}\left(\ell^{\prime} \mid z\right)
\end{aligned}
$$

- In [Christiano et al. 2017], some pairs annotations are just uniformed selected $\Rightarrow$ outliers.
- Instead of pairwise preferences, we can consider a best-choice preferences: Given a prompt $\boldsymbol{x}$ and $L$ responses, the label is the best response. [Ziegler et al. 2019].
- Assuming existence of score function might not hold in general
- What about $D_{\mathrm{kl}}\left(\pi_{\text {ref }} \| \pi_{\boldsymbol{\theta}}\right)$


## Preference Optimization with the Pairwise Cringe Loss

Jing Xu et al. "Some things are more cringe than others: Preference optimization with the pairwise cringe loss". In: arXiv preprint arXiv:2312.16682 [2023] Alignment samples can be in different forms:

- Supervised setting: $(\boldsymbol{x}, \boldsymbol{y})$
- Binary feedback: $\left(\boldsymbol{x}^{+}, \boldsymbol{y}^{+}, \boldsymbol{x}^{-}, \boldsymbol{y}^{-}\right)$
- Binary preference: $\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)$

Cringe loss is originally applied to Binary feedback data:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{BIN}}\left(\boldsymbol{x}^{-}, \boldsymbol{y}^{-}, \boldsymbol{x}^{+}, \boldsymbol{y}^{+}\right)=\mathcal{L}_{\mathrm{CE}}+\mathcal{L}_{\mathrm{Cr}} \\
& \mathcal{L}_{\mathrm{CE}}\left(\boldsymbol{x}^{+}, \boldsymbol{y}^{+}\right)=-\log \operatorname{Pr}\left(\boldsymbol{y}^{+} \mid \boldsymbol{x}^{+}\right) \\
& \mathcal{L}_{\mathrm{Cr}}\left(\boldsymbol{x}^{-}, \boldsymbol{y}^{-}\right)=-\log \sum_{t} \log \frac{\exp \left(s_{t}^{*}\right)}{\exp \left(s_{t}^{*}\right)+\exp \left(s_{t}\left[y_{t}^{-}\right]\right)},
\end{aligned}
$$

where we feed the prompt $\boldsymbol{x}^{-}$to the model, and ask it to generate an output of length $T$ :

- At the $t$-th token, we select top $k$ tokens according model's prob output $s_{t}^{1}, \ldots, s_{t}^{k}$.
- Normalizing probability over these tokens by applying softmax function.
- Sample an index $z \sim \operatorname{Categorical}\left(s_{t}^{1}, \ldots, s_{t}^{k}\right), z \in[k]$.
- $s_{t}^{*}=s_{t}^{z}$.


## Apply Cringe Loss to Pairwise Preference data

They propose to use the following loss on pairwise preference data

$$
\mathcal{L}_{\text {Pair }}\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=g\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \mathcal{L}_{\mathrm{BIN}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{x}, \boldsymbol{y}_{2}\right),
$$

where

$$
\begin{aligned}
& g\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\sigma\left(b-M\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\right), \\
& M\left(\boldsymbol{x}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\log \operatorname{Pr}\left(\boldsymbol{y}_{1} \mid \boldsymbol{x}\right)-\log \operatorname{Pr}\left(\boldsymbol{y}_{2} \mid \boldsymbol{x}\right) .
\end{aligned}
$$

## Result

Table 1: AlpacaFarm evaluation results (LLM evaluation), using human preference data and reward model (where applicable) for training. ( ${ }^{*}=$ average of 3 seeds). ${ }^{1} \mathrm{PPO}$ with human preferences was trained by Dubois et al. (2023); we just evaluated the model.

| METHOD | WIN RATE (\%) |
| :--- | :---: |
| Results reported by Dubois et al. (2023) |  |
| LLAMA 7B | 11.3 |
| SFT 10K | 36.7 |
| SFT 52K | 39.2 |
| Experiments reported in this paper: |  |
| BINARY CRINGE | $47.7^{*}$ |
| PPO $^{1}$ | $48.5^{*}$ |
| DPO | $50.2^{*}$ |
| PAIRWISE CRINGE | $54.7^{*}$ |

Figure: Image

