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Alignment problem

▶ Human preference of a response y given a prompt x is measured by rϕ♮(x,y) ≥ 0.
▶ r(x,y1) > r(x,y2) means y1 is more preferred than y2.

▶ Objective: given a trained language model πref(y | x), fine-tune it so that
▶ The outputs are aligned with human preference, while
▶ Retaining the original model’s generation skill.

A realized objective function:

maximize
θ

E
x∼D,y∼πθ(·|x)

[
rϕ♮(x,y)

]
− β E

x∼D

[
Dkl(πθ(y | x) ∥ πref(y | x))

]
(1)

Issues

1. rϕ♮(x,y) is unknown.

2. Problem (1) is “hard” to optimize due to the involvement of θ in y ∼ πθ(· | x) under
expectation.
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The RL from Human Feedback approach [Ziegler et al. 2019]

▶ Estimate the score function rϕ♮(x,y)

▶ Finetune the LLM model by optimizing the original objective function using the learned
rϕ⋆ .
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Fixing Issue 1: Specifying Preference Model
In hope of learning rϕ♮(x,y), we have to specify some model, and then obtain some samples.
Preference Bradley-Terry model:

▶ Given L items, item i has a score si > 0.

▶ It models a binary result of an event i beats j as a Bernoulli RV with parameter

Pr(i ≻ j) =
si

si + sj
, ∀i, j ∈ [L].

In our LLM context,

Pr(y1 ≻ y2 | x) =
exp(rϕ♮(x,y1))

exp(rϕ♮(x,y1)) + exp(rϕ♮(x,y2))
= σ

(
rϕ♮(x,y2)− rϕ♮(x,y1)

)
.

Under this model, the MLE objective is [Ziegler et al. 2019]

minimize
ϕ

E
x,y1,y2∼D

[
I[y1 ≻ y2]σ

(
rϕ(x,y2)− rϕ(x,y1)

)
+ I[y2 ≻ y1]σ

(
rϕ(x,y2)− rϕ(x,y1)

)]
,

But there is no guarantee of learning the true rϕ♮ .
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Fixing Issue 2:

Now we have learned rϕ⋆ , the objective is

E
x∼D,y∼πθ(·|x)

[rϕ⋆(x,y)]− β E
x∼D

[Dkl(πθ(y | x) ∥ πref(y | x))]

= E
x∼D,y∼πθ(·|x)

[
rϕ⋆(x,y)− β(log(πθ(y | x))− log(πref(y | x)))

]
= E

x∼D,y∼πθ(·|x)
[fθ(x,y)] .

This is a standard objective used in RL (policy gradient), hence can be solved using
off-the-shelf tools such as PPO.
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A new approach

Rafael Rafailov et al. “Direct preference optimization: Your language model is secretly a reward
model”. In: arXiv preprint arXiv:2305.18290 [2023]

maximize
πθ

E
x∼D,y∼πθ(·|x)

[
rϕ♮(x,y)

]
− E

x∼D
[Dkl(πθ(y | x) ∥ πref(y | x))] (2)

This problem has “closed-form” solution:

π⋆(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
rϕ♮(x,y)

)
Note that RL people already known this, but this result is not very helpful due to the
intractability of Z(x).
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Proof of optimal policy

argmax
πθ

Objective = argmax
πθ

E
x∼D,y∼πθ(·|x)

[
rϕ♮(x,y)

]
− β E

x∼D
[Dkl(πθ(y | x) ∥ πref(y | x))]

= argmax
πθ

E
x∼D,y∼πθ(·|x)

[
rϕ♮(x,y)− β log

πθ(y | x)
πref(y | x)

]
= argmin

πθ

E
x∼D,y∼πθ(·|x)

[
log

πθ(y | x)
πref(y | x)

− 1

β
rϕ♮(x,y)

]

= argmin
πθ

E
x∼D,y∼πθ(·|x)

log πθ(y | x)
1

Z(x)
πref(y | x) exp(rϕ♮ (x,y)/β)

− logZ(x)



= argmin
πθ

E
x∼D,y∼πθ(·|x)

log πθ(y | x)
1

Z(x)
πref(y | x) exp(rϕ♮ (x,y)/β)

 ,

where
1

Z(x)
=

∑
y πref(y | x) exp

rϕ♮(x,y)

β
.
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And therefore, the optimal value is 0 and optimal solution is

π⋆(y | x) = 1

Z(x)
πref(y | x) exp

rϕ♮(x,y)

β
.

Now we can express the unknown score function r() in terms of optimal solution π⋆, hence
allow us to reduce the unknown to only π⋆.

rϕ♮(x,y) = β log
π⋆(y | x)
πref(y | x)

+ β logZ(x)
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Then with the preference model, we can derive the MLE objective to find that optimal π⋆.

▶ Under the Bradley-Terry model, observing dataset [(xi,y1i,y2i)]
n
1 , the MLE objective is

E
x,y1,y2∼D

[
I[y1 ≻ y2]σ

(
rϕ(x,y2)− rϕ(x,y1)

)
+ I[y2 ≻ y1]σ

(
rϕ(x,y2)− rϕ(x,y1)

)]
= E

x,y1,y2∼D

[
I[y1 ≻ y2]σ

(
β log

πϕ(y1 | x)
πref(y1 | x)

− β log
πϕ(y2 | x)
πref(y2 | x)

)
+ I[y2 ≻ y1]σ

(
β log

πϕ(y2 | x)
πref(y2 | x)

− β log
πϕ(y1 | x)
πref(y1 | x)

)
.
]

In other words, we are parameterizing the unknown score function
r(x,y) = log πθ(x,y)− log πref(x,y) to guarantee that the optimal solution of problem
(1) is πθ.
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Control setting
We want to finetune a LM model such that it always produce positive reviews.

Figure: exp 1
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Control setting - My try

▶ Dataset: IMDB, ∼ 20k reviews

▶ True score function is given by a sentiment classifier (a pretrained large network)

▶ πref: Fine-tuning gpt2-large (1.4B params) on unlabeled IMDB

▶ For PPO, we provide the true score function.

▶ For DPO, given a prompt, we sample 4 responses for each prompt, and create 6 preference
pairs.

Table: About an hour training for each method

πref πppo πdpo
Sentiment score 0.625 0.86 0.99

KL 0. 1.7 -26.6
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Result on other tasks
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Extensions

▶ Assuming preference pairs are noisy due to annotator’s imperfection,

z ∼ Bern(σ(r(x,y1)− r(x,y2)))

ℓ ∼ Pr(ℓ′ | z)

▶ In [Christiano et al. 2017], some pairs annotations are just uniformed selected ⇒ outliers.

▶ Instead of pairwise preferences, we can consider a best-choice preferences: Given a prompt
x and L responses, the label is the best response. [Ziegler et al. 2019].

▶ Assuming existence of score function might not hold in general

▶ What about Dkl(πref ∥ πθ)
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Preference Optimization with the Pairwise Cringe Loss

Jing Xu et al. “Some things are more cringe than others: Preference optimization with the
pairwise cringe loss”. In: arXiv preprint arXiv:2312.16682 [2023] Alignment samples can be in
different forms:

▶ Supervised setting: (x,y )

▶ Binary feedback: (x+,y+,x−,y− )

▶ Binary preference: (x,y1,y2 )
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Cringe loss is originally applied to Binary feedback data:

LBIN(x
−,y−,x+,y+) = LCE + LCr

LCE(x
+,y+) = − logPr(y+ | x+)

LCr(x
−,y−) = − log

∑
t

log
exp(s∗t )

exp(s∗t ) + exp(st[y
−
t ])

,

where we feed the prompt x− to the model, and ask it to generate an output of length T :

▶ At the t-th token, we select top k tokens according model’s prob output s1t , . . . , s
k
t .

▶ Normalizing probability over these tokens by applying softmax function.

▶ Sample an index z ∼ Categorical(s1t , . . . , s
k
t ), z ∈ [k] .

▶ s∗t = szt .
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Apply Cringe Loss to Pairwise Preference data

They propose to use the following loss on pairwise preference data

LPair(x,y1,y2) = g(x,y1,y2)LBIN(x,y1,x,y2),

where

g(x,y1,y2) = σ(b−M(x,y1,y2)),

M(x,y1,y2) = logPr(y1 | x)− logPr(y2 | x).
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Result

Figure: Image
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