
Diffusion Models and Applications

Tri Nguyen

Internal Reading Meeting
Oregon State University

February 24, 2023

1 / 25

Task

Generate new data

x1, . . . ,xN are sampled i.i.d. from an unknown PX . How to sample x ∼ PX ?

Figure: From [Ho et al. 2020].

2 / 25

VAE Approach
VAE [Kingma and Welling 2013] makes some assumptions about family distribution to which PX
belongs:
▶ Existence of latent factors z: P (x, z) = P (x | z)P (z)
▶ P (x|z) = f1(x, z;θ1) where function class f1 is some known distribution (in x).
▶ P (z) = f2(z;θ2) where function class f2 is some known distribution (in z).

Maximum likelihood principle suggests to maximize:

logP (x) = log

(∑
z∈Z

P (x | z)P (z)

)
= log

(∑
z∈Z

f1(x, z;θ1)f2(z;θ2)

)
We can try to maximize its lower bound: For any distribution Q(z),

logP (x) = Dkl(Q(z) ∥ P (z | x)) + L(Q), where L(Q) = E
z∼Q(z)

[
log

P (x, z)

Q(z)

]
Let Q(z) = f3(z;θ3), and the lower bound can be maximized with respect to θ1,θ2,θ3.

Could it be tractable without any assumption on PX ?

3 / 25

Diffusion Model
Given an observed x0 ∼ PX , define a sequence of RVs x1,x2, . . . ,xT

1:

xt =
√
1− βtxt−1 +

√
βtzt−1, t = 1, . . . , T − 1,

where

▶ z1, . . . ,zT are i.i.d, and zt ∼ N (0, I).

▶ 0 < β0, . . . , βT < 1 are predefined.

Claims

1. The sequence x0, . . . ,xT satisfies Markov property: P (xt | xt−1, . . . ,x0) = P (xt | xt−1).

2. If T is large enough, P (xT | x0) is approximately a Gaussian distribution regardless of PX .

3. The backward direction of the chain also satisfies Markov property. In particular,

xt−1 =
(
2−

√
1− βt+1

)
xt + βt∇x log pt(xt) +

√
βt+1zt

1abuse of notation
4 / 25

Implication

Claims

1. The sequence x0, . . . ,xT satisfies Markov property: P (xt | xt−1, . . . ,x0) = P (xt | xt−1).

2. If T is large enough, P (xT | x0) is approximately a Gaussian distribution regardless of PX .

3. The backward direction of the chain also satisfies Markov property. In particular,

xt−1 =
(
2−

√
1− βt+1

)
xt + βt∇x log pt(xt) +

√
βt+1zt

In VAE’s world,
▶ Latent factor z = (x1, . . . ,xT)
▶ Family of P (z) is well defined without assumption,

P (z) =
∑
x0∈X

P (z,x0) =
∑
x0∈X

P (x0 | x1)︸ ︷︷ ︸
N (µ1,σ2

1I)

. . . P (xT−1 | xT)︸ ︷︷ ︸
N (µT ,σ2

T I)

P (xT)︸ ︷︷ ︸
N (0,I)

▶ Family of P (x | z) is well defined without assumption,

P (x | z) = P (x0 | x1, . . . ,xT) = P (x0 | x1) = N (µ1, σ
2
1I)

5 / 25

Proof of property 2

Claims

▶ If T is large enough, P (xT | x0) is approximately a Gaussian distribution regardless of PX .

One step transition is

P (xi+1 | xi) ∼ N (xi

√
(1− βi+1),

√
βi+1I),

similarly, t steps transition is

P (xi+t | xi) = N

xi

√√√√ i+t∏
j=i+1

(1− βj),

1−
i+t∏

j=i+1

(1− βj)

 I

 ,

Therefore, when T is large enough,

P (xT | x0) = N

x0

√√√√ T∏
j=1

(1− βj),

1−
T∏

j=1

(1− βj)

 I

 ∼ N (0, I),

6 / 25

Define some constants

P (xi+t | xi) = N

xi

√√√√ i+t∏
j=i+1

(1− βj),

1−
i+t∏

j=i+1

(1− βj)

 I

 ,

Define some notation

αt ≜ 1− βt,

αt =

t∏
s=1

αs

7 / 25

Proof of property 3
▶ w(t) ∈ Rd is the standard Wiener process (or Brownian motion).

Figure: Brownian motion describes position of a random moving object, e.g., particles in water.

The increment wt2 −wt1 is Gaussian with mean zero and variance t2 − t1.
8 / 25

Informal proof of property 3
Diffusion process. Given

▶ x(t) : R+ → Rd is a function of t ≥ 0.

▶ w(t) ∈ Rd is the standard Wiener process.

▶ f(x, t) : Rd × R→ Rd: drift coefficient of x(t).

▶ g(·) : R→ R: diffusion coefficient of x(t).

then a diffusion process is governed by a stochastic differential equation (SDE)

x(0) ∼ PX (1a)

dx = f(x, t)dt+ g(t)dw (1b)

By starting from samples of xT ∼ pT , and reverse process, we can obtain x(0) ∼ PX .
Remarkable result from [x]: the reverse process is also a diffusion process, i.e,

x(T) ∼ pT (2a)

dx(t) =
(
f(x(t), t)− g(t)2∇x log pt(x(t))

)
dt+ g(t)dw, (2b)

where w is another standard Wiener process.
9 / 25

Proof of property 3
Based on Yang Song et al. “Score-based generative modeling through stochastic differential
equations”. In: arXiv preprint arXiv:2011.13456 [2020].

Proof.

▶ Discrete the forward SDE dx = f(x, t)dt+ g(t)dw:

xt+1 = xt + ft(x) + gt.

▶ By choosing ft(x) ≜
(√

1− βt+1 − 1
)
x, gt ≜

√
βt+1,

xt =
√
1− βtxt−1 +

√
βtzt−1, t = 1, . . . , T − 1. (our original chain)

▶ Discrete the backward SDE dx(t) =
(
f(x(t), t)− g(t)2∇x log pt(x(t))

)
dt+ g(t)dw:

xt−1 = xt − ft(xt) + g2t∇x log pt(xt) + gtzt.

▶ Plug in ft, gt:

xt−1 = (2−
√
1− βt+1)xt + βt+1∇x log pt(xt) +

√
βt+1zt

10 / 25

The SDE Framework
Forward SDE

dx = f(x, t)dt+ g(t)dw

Backward SDE
dx(t) =

(
f(x(t), t)− g(t)2∇x log pt(x)

)
dt+ g(t)dw

By choosing f(x, t), g(t), we can design various diffusion process where xT ∼ pT is in our
control.
The remaining is to learn score function

θ∗ = argmin
θ

E
t

[
λ(t) E

x(0)
E

x(t)|x(0)

[∥∥sθ(x(t), t)−∇x(t) log p0t(x(t) | x(0))
∥∥2]]

▶ Time t is uniform sampled over [0, T]

▶ λ(t) : [0, T]← R+ is a weighting function

▶ x(0) ∼ PX and x(t) ∼ P (x(t) | x(0)) where P (x(t) | x(0)) is Gaussian if f(x, t) is affine
in x.

▶ Expressiveness power of deep neural network is fully exploited here.

11 / 25

The SDE Framework

Forward SDE
dx = f(x, t)dt+ g(t)dw

Backward SDE
dx(t) =

(
f(x(t), t)− g(t)2∇x log pt(x)

)
dt+ g(t)dw

Once sθ∗(x, t) is learned, we can derive the reverse diffusion process from the backward SDE

dx(t) =
(
f(x(t), t)− g(t)2∇x log pt(x)

)
dt+ g(t)dw

and simulate it to sample x0 ∼ PX .

▶ Solve the backward SDE using numerical SDE solver

▶ Ancestor sampling method . . .

The whole training and parameterization can be implemented under a probabilistic model, like
in VAE.

12 / 25

Training Process Under Probabilistic View

Based on Jonathan Ho et al. “Denoising diffusion probabilistic models”. In: Advances in
Neural Information Processing Systems 33 [2020], pp. 6840–6851.
Define a generative model x0 ← x1 ← . . .← xT as

P (xT) ≜ N (0, I), (3)

Pθ(x0, . . . ,xT) ≜ P (xT)

T∏
t=1

Pθ(xt−1 | xt), P (xt−1 | xt) ≜ N (µθ(xt, t),Σθ(xt, t)) (4)

P (x1, . . . ,xT | x0) ≜
T∏

t=1

P (xt | xt−1), P (xt | xt−1) ≜ N (
√

1− βtxt−1, β, I) (5)

With large T , there always exists θ such that x0 ∼ PX ,xT ∼ N (0, I).
How to perform inference on this model efficiently?

13 / 25

Diffusion Model Inference
By maximum likelihood principle, we want to minimize

E
x0∼Pθ(x0)

[− logPθ(x0)] ≤ E
Pθ(x0)

[
− logP (xT)−

T∑
t=1

log
Pθ(xt−1 | xt)

P (xt | xt−1)

]

= E
Pθ(x0)

const+ T∑
t>1

Dkl(P (xt−1 | xt,x0) ∥ Pθ(xt−1 | xt))︸ ︷︷ ︸
Lt−1

−almost const

 ,

This expression is better since P (xt−1 | xt,x0) is tractable, i.e.,

P (xt−1 | xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI),

µ̃t(xt,x0) ≜

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt

We mostly only need to take care of Lt−1 for t = 1, . . . , T .
The remaining part is how to parameterize

Pθ(xt−1 | xt) = N (µθ(xt, t), σ
2
t I)

14 / 25

Diffusion Model Inference
Recall that we want to minimize

Lt−1 ≜ E
x0∼Pθ(x0)

[Dkl(P (xt−1 | xt,x0) ∥ Pθ(xt−1 | xt))]

= E
x0∼Pθ(x0)

[
1

2σ2
∥µ̃t(xt,x0)− µθ(xt, t)∥2

]
+ C

Using reparameterization trick on P (xt | x0) = N (
√
αtx0, (1− αI)),

xt(x0, ϵ) =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I)

Plug in that xt(x0, ϵ),

Lt−1 − C = E
x0,ϵ

[
1

2σ2

∥∥∥∥ 1
√
αt

(
xt −

βt√
1− αt

ϵ

)
− µθ(xt, t)

∥∥∥∥2
]

This clearly suggest a parameterization

µθ(xt, t) ≜
1
√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
,

where ϵθ(xt, t) is neural network predicts true noise ϵ from input xt and time t.
15 / 25

Diffusion Model Inference

Finally, the loss function would be

Ex0,ϵ

[
β2
t

2σ2
tαt(1− αt)

∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)

∥∥2]
And the sampling process is to sample recursively xt−1 ∼ Pθ(xt−1 | xt),

xt−1 =
1
√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)

16 / 25

Take home points

▶ Expressively powerful as there is almost no assumption about family of PX while being
tractable.

▶ Error occurs in choosing T , choosing function class of score function sθ, learning sθ
▶ No assumption about input structure (vs VAE): 1d, 2d. . . , image, text,

17 / 25

Diffusion Model in Action.

▶ High resolution image generation.

▶ Conditional generative model.

▶ Inverse problem.

18 / 25

Applications: High resolution image generation

Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 10684–10695. This paper is the core of Stable Diffusion.
Diffusion process on image space is too expensive.

▶ Find a good latent space, a good encoder E and decoder D
▶ Project all data to this latent space zi = E(xi) ∼ PZ

▶ Run diffusion to sample new latent vector z ∼ PZ

▶ Decode the latent vector to get new image D(z)

19 / 25

Conditional generation setting.
Setting:

▶ We have a list of paired data (x1,y1), (x2,y2), . . . , (xN ,yN) where yi is additional
information about xi, such as class label, text describing the image.

▶ Later, we want to sample new x given particular y.

Define a generative model x0 ← x1 ← . . .← xT as

P (xT | y) ≜ N (0, I), Pθ(x0, . . . ,xT | y) ≜ P (xT | y)
T∏

t=1

Pθ(xt−1 | xt,y), (6)

P (xt−1 | xt,y) ≜ N (µθ(xt, t,y),Σθ(xt, t,y)) (7)

P (x1, . . . ,xT | x0,y) ≜
T∏

t=1

P (xt | xt−1,y), P (xt | xt−1,y) ≜ N (
√

1− βtxt−1, β, I) (8)

The loss function would be

Ex0,y,ϵ

[
β2
t

2σ2
tαt(1− αt)

∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t,y)

∥∥2]
20 / 25

Applications: Image Restoration
Yinhuai Wang et al. “Zero-Shot Image Restoration Using Denoising Diffusion Null-Space
Model”. In: arXiv preprint arXiv:2212.00490 [2022]
Given

y = Ax+ n,

where y is observed signal, A is known linear operator (dow-sampling of an image, sampling
matrix in compressed sensing, . . .), x is the original signal that we wish to recover, n is
nonlinear noise.
Existing approaches are

▶ Domain knowledge-based regularization

x̂ = argmin
x

1

2

N∑
i=1

∥yi −Axi∥2 + λR(xi)

▶ Then deep learning comes in: data distribution-based regularization

argmin
w

∥AG(w)− y∥2 + λR(w),

21 / 25

Solution of y = Ax is
x̂ = A†y + (I −A†A)x, ∀x

So the idea is to find x such that P (x̂;x) = PX .
In order to do so, and note that the requirement of data consistency is only required on x0,
not all the other xi’s (during the sampling process).

▶ Sample xT

▶ Sample xt−1 based on xt

▶ Infer x0 from xt

▶ Rectify x0 to get x̂0 such that Ax̂0 = y (so it satisfies data consistency)

▶ Get the “rectify” version of xt−1, namely x̂t−1

▶ Back to step 2

22 / 25

In details

Recall that
xt(x0, ϵ) =

√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I)

Suppose we have xt, a good trained diffusion model gives us ϵθ̂(xt, t) ≈ ϵ, then an estimate of
x0 given xt is

x̂0|t =
1√
αt

(
xt − ϵθ̂(xt, t)

√
1− αt

)
Modify this to satisfy data consistency,

x̃0|t = A†Ay + (I −A†A)x̂0|t

Then we can sample xt−1 as xt−1 ∼ P (xt−1 | xt, x̃0|t),

xt−1 =

√
αt−1βt

1− αt
x̃0|t +

√
αt(1− αt−1)

1− αt
xt + σtϵ, ϵ ∼ N (0, I)

23 / 25

Some thoughts

▶ We only need to train diffusion model once, and then freeze it.

▶ But we need to know linear operator A in advance

24 / 25

Something else

▶ Nicholas Carlini et al. “Extracting training data from diffusion models”. In: arXiv preprint
arXiv:2301.13188 [2023]

▶ And measure performance of generative model is still a controversial topic

▶ Energy-based models.

▶ Discrete latent.

25 / 25

