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What would be covered

1. The emergent of diffusion model: Jascha Sohl-Dickstein et al.
“Deep unsupervised learning using nonequilibrium thermodynamics”.
In: International Conference on Machine Learning. PMLR. 2015,
pp. 2256–2265

2. The rise of score matching approach: Yang Song and
Stefano Ermon. “Generative modeling by estimating gradients of the
data distribution”. In: Advances in Neural Information Processing
Systems 32 [2019]
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Problem settings
▶ Given i.i.d images x1, . . . ,xN drawn from unknown p(x).
▶ We want to draw new images x ∼ p(x)!

What have been done: VI, VAE, . . .
Brief summary on the use of MLE principle max log p(x). Assuming
there is a latent factor z,
▶ Variation inference (VI):

max
q∈Q

log p(x) = max
q∈Q

{L(q) + KL(q(z)||p(z|x))} ,

L(q) ≜ E
q(z)

[
log

p(x, z)

q(z)

]
VI assumes Q = {q(·) : q(z) =

∏m
i=1 q(zi)} and analytically derive

coupled equations between zi, and often be solved be iterative
method.

▶ VAE: Assume the true joint distribution
pθ⋆(x, z) = pθ⋆(z)pθ⋆(x|z).

max
θ,ϕ

log p(x) = max
θ,ϕ

{L(θ,ϕ) + KL(qϕ(z|x)||pθ(z|x))} ,

L(θ,ϕ) ≜ E
qϕ(z|x)

[− log qϕ(z|x) + log pθ(x, z)] ,

Intention between tractability and model complexity!
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Diffusion model: The general goal

▶ “Deep unsupervised learning using nonequilibrium thermodynamics”
aims to simultaneously achieves both flexibility and tractability.

▶ [Very informal] Find a transformation T such that

x ∼ pdata(x) ⇒ T (x) ∼ pnice(x)

and
x ∼ pnice(x) ⇒ T −1(x) ∼ pdata(x)
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Deep unsupervised learning using nonequilibrium
thermodynamics

▶ Define a Markov chain (forward):
x0 → x1 → x2 → . . . → xT−1 → xT

q(xt|xt−1) ≜ N (xt;xt−1
√

1− βt, βtI), 0 ≤ βt ≤ 1

q(x0...T ) = q(x0)

T∏
i=1

q(xt|xt−1)

▶ Then,

q(xt|x0) = N (xt|
√
αtx

0, (1− αt)I), αt ≜
t∏

i=1

(1− βi)

which implies q(xT |x0) ≈ N (xT ;0, I) if αT → 0.
▶ And also, q(xT ) ≈ N (xT ;0, I) when T is large enough (?)
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Generative Process

Let q(x0) be data distribution. Given that Markov chain, how to sample
from p(x0|xT )? Note that the forward is fixed, conditional q(xt|xt−1) is
known, q(xT ) ≈ N (xT |0, I) .

Figure: CVPR 2022 tutorial

A naive but sound strategy:

▶ Sample xT ∼ N (xT |0, I)
▶ Sample xt−1 ∼ p(xt−1|xt) ∝ p(xt−1,xt) = q(xt|xt−1)p(xt−1) ⇒

intractable.

Good news is if βt in q(xt|xt−1) ≜ N (xt;xt−1
√
1− βt, βtI) is small

enough, then p(xt−1|x1) is also a normal distribution.
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Recipe
▶ Let q(x0) denote the unknown data distribution

▶ Define βt, 1 ≤ t ≤ T such that

q(xt|xt−1) ≜ N (xt;xt−1
√

1− βt, βtI), 0 ≤ βt ≤ 1 (1)

q(xT |x0) ≈ N (xT ;0, I) (2)

p(xt−1|xt) is normal ∀1 ≤ t ≤ T (3)

Since we know p(xt−1|xt) is normal, it can be parameterized as

p(xt−1|xt) ∼ N (xt−1;µθ(x
t, t), σ2I)

Figure: CVPR 2022 tutorial

There is no assumption on data distribution
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Training
▶ Latent variables x1...T

▶ Model probability p(x0) =
∫
p(x0...T )dx1...T

▶ Data distribution q(x0)
▶ Posterior probability q(x1...T |x0)

We try to minimize KL divergence between model probability and the
real data distribution (which reduces to MLE),

maximize
x1...T

E
x∼q(x0)

log p(x0)

p(x0) =

∫
p(x0...T )

q(x1...T |x0)

q(x1...T |x0)
dx1...T

=

∫
q(x1...T |x0)

p(x0...T )

q(x1...T |x0)
dx1...T

=

∫
q(x1...T |x0)p(xT )

T∏
i=1

p(xt−1|xt)

q(xt|xt−1)
dx1...T

= E
q(x1...T |x0)

[
p(xT )

T∏
i=1

p(xt−1|xt)

q(xt|xt−1)

]
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Training

What we want
maximize

x1...T
E

x∼q(x0)
log p(x0)

What we know is

E
x∼q(x0)

log p(x0) = E
q(x0)

log

(
E

q(x1...T |x0)

[
p(xT )

T∏
i=1

p(xt−1|xt)

q(xt|xt−1)

])

≥ E
q(x0...T )

log

[
p(xT )

T∏
i=1

p(xt−1|xt)

q(xt|xt−1)

]
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Estimate un-normalized probability model
Problem setting:
▶ x1, . . . ,xN ∈ Rn are drawn i.i.d from pdata(x).
▶ Assume we know that pdata belong a distribution class

pθ(x) = q(x;θ)/Z(θ).
▶ Functional form of q(x;θ) is known, but Z(θ) =

∫
x
q(x;θ)dx is

intractable.
▶ Goal: We want to use xi’s to estimate θdata corresponding to pdata

(assume it is unique).

[Hyvärinen and Dayan 2005] proposed to

minimize
θ

E
pdata

[
∥∇x log pθ(x)−∇x log pdata(x)∥2

]
(4)

▶ Normalization factor plays no role here.
∇x log pθ(x) = ∇x(log q(x;θ)− logZ(θ)) = ∇x log q(x;θ).

▶ (1) is surprisingly equivalent to

minimize
θ

E
pdata

[
tr(∇xsθ(x)) +

1

2
∥sθ(x)∥2

]
where the so-cal score sθ(x) ≜ ∇xq(x;θ).
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Generative Modeling by Estimating Gradients of the Data
Distribution

General recipe include 2 ingredients:

▶ Step 1: Using score match to estimate score of data distribution.

▶ Step 2: Using Langevin dynamics to draw samples using score
function.

xt = xt−1 +
ϵ

2
∇x log p(xt−1) +

√
ϵzt,

where zt ∼ N (0, I),x0 ∼ π(x). This would produce xt ∼ p(x)
when ϵ → 0, t → ∞ (in practice, T = 100, ϵ = 2e−5 ).
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Generative Modeling by Estimating Gradients of the Data
Distribution

Challenges in step 1: computation complexity

minimize
θ

E
pdata

[
tr(∇xsθ(x)) +

1

2
∥sθ(x)∥2

]

▶ Computing the first term tr(·) (involving Jacobian) is costly for high
dimensional data.
▶ Solution 1 [Vincent 2011]. Add pre-specified noise to data qσ(x̃|x),

then using score matching to learn score of
qσ(x) =

∫
x
qσ(x̃|x)pdata(x)dx (instead of pdata ).

It was shown that the objective is equivalent to

E
x̃∼qσ(·)

[
∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥2

]
,

and by score matching’s result, the optimal solution
sθ⋆(x) = ∇x log qσ(x) ≈ pdata(x).
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▶ Solution 2: [Song et al. 2019] Random projection to estimate tr(·).
The objective now become

E
pv

E
pdata

[
v⊤(∇xsθ(x))v +

1

2
∥sθ(x)∥2

]
Several other challenges are demonstrated in [Song et al. 2020]. In the
end, they proposed to add noise with different variance.

(a) Low dimension manifold. Left: train
with original MNIST, right: add noise

N (0, 0.0001)

(b) In low density region,
there is not enough data to

learn ∇x log pdata
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Suggestion if anyone’s interested

▶ Jonathan Ho et al. “Denoising diffusion probabilistic models”. In:
Advances in Neural Information Processing Systems 33 [2020],
pp. 6840–6851

▶ Yang Song et al. “Score-based generative modeling through
stochastic differential equations”. In: arXiv preprint
arXiv:2011.13456 [2020]
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