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Some Definitions

▶ Directed Acyclic Graph (DAG). A graph G is a DAG if it is
directed and there is no cycle.
▶ d-separation. 3 vertices is called A ⊥⊥G B|C if they form either a

chain, fork, or collider in G (in a particular order).

▶ Markov assumption. A joint probability P is Markov compatible to
a DAG G iff

P (X1, . . . , Xp) =
∏
i

P (Xi|pai)

▶ P is Markov compatible to G iff

A ⊥⊥G B | C ⇒ A ⊥⊥P B | C
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Some Definitions

▶ Minimality (informal). G is the “smallest graph” that is compatible
with P .

▶ Faithfulness assumption. P is faithful to a DAG G iff

A ⊥⊥P B | C ⇒ A ⊥⊥G B | C

▶ Faithfulness and Markov assumption leads to minimality.

▶ Markov equivalence. Set of all minimal DAG G that are Markov
compatible to P .

P (X1, X2, X3) = P (X1|X2)P (X3|X2)P (X2).
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Problem

Structure Identification

Given n i.i.d data X ∈ Rn×p that are generated from some
P (X1, . . . , Xp), can we identify a minimal DAG G up to Markov
equivalence?

X1 X2 X3

G1

X1 X2 X3

G2

If the ground truth P (X1, X2, X3) = P (X1|X2)P (X3|X2)P (X2), can we recover G1 (or its
equivalence) from observational data?
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Constraint-based Approach: The PC-Algorithm

[Glymour et al. 2019]

▶ Step 1: Identify the skeleton (A-D)

▶ Step 2: Identify v-structures and orient them (E)

▶ Step 3: Identify qualifying edges that are incident on collider (F)
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Structural Equation Model

▶ Another representation named Structural Equation Model (SEM) is
used to model relationship among variables.

Xi = f(Pai, zi),

where zi is independent to all variables in Pai, and all zis are
mutually independent.

▶ One popular consideration is linear function, and some/all of zi
follow Gaussian distribution [Loh et al. 2014; Van de Geer et al. 2013].

▶ In [Zheng et al. 2018], f is assumed as

Xi = w⊤
iPai + zi

Then a DAG G can be represented by an adjacency matrix
W ∈ Rp×p such that
▶ wij ̸= 0 ⇔ (i → j) is an edge in G. Denote such constructed graph

G(W ).
▶ Xi = W (:, i)⊤X + zi.
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Score-based Approach

A general formulation,

maximize
G

s(W )

subject to G(W ) is a DAG

▶ Many score function s(·) have been developed that guarantee
identifiability of G, such as Bayesian information criterion (BIC).

For example, ∥X −XW ∥2F + λr(W ) is used in case of Gaussian
linear structural model [Van de Geer et al. 2013].

▶ However, dealing with the constraint is difficult. The problem is
NP-hard [M. Chickering et al. 2004].

▶ A pioneer work is greedy equivalence search (GES) [D. M. Chickering

2002].
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Score-based Approach

min
W∈Rd×d

s(W )

subject to G(W ) ∈ DAG
⇔

min
W∈Rd×d

s(W )

subject to h(W ) = 0

where we wish h to be

▶ h(W ) = 0 if and only if G(W ) is acyclic.

▶ h(W ) = 0 measures the “DAG-ness” of the graph.

▶ h(W ) is smooth.

▶ h(W ) and its derivatives are easy to compute.
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Binary Case

Proposition (Infinite series)

Suppose B ∈ {0, 1}p×p and |λmax(B)| < 1. Then G(B) is a DAG if and
only if

tr(I−B)−1 = p.

Proof.

▶ Number of length-2 paths from i to j is∑p
t=1 B(i, t)B(t, j) = B2(i, j).

▶ Number of length-k paths from i to j is Bk(i, j).

▶ Number of closed length-k paths from i to i is Bk(i, i).

▶ Number of closed length-k paths is tr(Bk).

▶ A graph is acyclic if and only if
∑∞

k=1 tr(B
k) = 0
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For any square matrix B,

(I −B)−1 = I + (I −B)−1B

= I + (I + (I −B)−1B)B

= . . .

= I +B +B2 + . . .

tr
(
(I −B)−1

)
= tr(I) +

∞∑
k=1

tr(Bk) = p
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A Better Formula

Proposition

A binary matrix B ∈ {0, 1}d×d is a DAG if and only if

tr(eB) = d.

where

eB :=

∞∑
k=0

1

k!
Bk

Remark

▶ eB is always well-defined for all square matrix B.

▶ The equivalence of having no cyclic path and tr(Bk) = 0 for all k
only hold if B > 0.
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Arbitrary Weight Matrix B

Theorem

For W ∈ Rp×p, G(W ) is a DAG iff

h(W ) := tr
(
eW ∗W )

− d = 0

Remark

▶ Gradient of h is ∇h(W ) = (eW ∗W )⊤∗ 2W .

▶ Evaluating eW costs O(p3) [Al-Mohy et al. 2010].

To this end,

minimize
W

1

2n
∥X −WX∥2F + λ ∥W ∥1

subject to tr(eW ∗W ) = d

and [Zheng et al. 2018] solved it using augmented Lagrange method.
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Experiment Result

Baseline

▶ PC-algorithm is excluded since GES and NOTEARS outperforms it
significantly.

▶ A fast version of GES named FGS is used [Ramsey et al. 2017]

Data

▶ Generate a random graph G by Erdös-Rényi (ER) or scale-free (SF)
model.

▶ Generate uniform W respect to graph G.

▶ Sample noise according to Gaussian, Exponential, and Gumble
distribution.

▶ Finally, generate data X ∈ Rn×p for p ∈ {10, 20, 50, 100}, and
n ∈ {20, 10000}.
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Experiment Result
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Experiment Result
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Bayesian Network

A Bayesian network is a tuple of 2 components: U,G =< V,E >.

▶ U = X1, . . . , Xp: set of random variables.

▶ G is a directed acyclic graph, where vertex Vi represents Xi.

Altogether, a BN defines a joint distribution P (X1, . . . , Xp) as

P (X1, . . . , Xp) =

p∏
i

P (Xi|pai)

Assume X is satisfied
Xi = w⊤

ipai + zi

where zi is some noise. All zi are mutually independent.
Now, given dataset, how do we identify graph G (or find W )?
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